SCHEME OF STUDIES & EXAMINATION SYLLABUS
BACHELOR OF TECHNOLOGY
(4 Year Degree Programme)
AUTOMOBILE ENGINEERING
(w.e.f. Session 2012-13)

DEENBANDHU CHHOTU RAM UNIVERSITY OF SCIENCE AND TECHNOLOGY
MURTHAL -131039 (SONIPAT) HARYANA
JUNE – 2012/MARCH-2013
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Pracetical</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HUM 101B</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>MATH 101B</td>
<td>MATHEMATICS-I</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PHY 101B</td>
<td>ENGINEERING PHYSICS-I</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>ME101B CH101B</td>
<td>MANUFACTURING PROCESSES (Gr-A) OR</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGINEERING CHEMISTRY (Gr-B)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>EE101B CSE101B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING (Gr-A) OR INTRODUCTION TO COMPUTERS & PROGRAMMING (Gr-B)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>ME103B ME105B</td>
<td>ENGINEERING GRAPHICS & DRAWING (Gr-A) OR ELEMENTS OF MECHANICAL ENGINEERING (Gr-B)</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>PHY103B</td>
<td>PHYSICS LAB-I</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>ME 107B CH103B</td>
<td>WORKSHOP PRACTICE (Gr-A) OR CHEMISTRY LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>EE103B CSE103B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING LAB (Gr-A) OR COMPUTER PROGRAMMING LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>ME109B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERINGLAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gr-A</td>
<td></td>
<td>16</td>
<td>5</td>
<td>12</td>
<td>245</td>
<td>375</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Gr-B</td>
<td></td>
<td>18</td>
<td>6</td>
<td>8</td>
<td>230</td>
<td>450</td>
<td>120</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of sports is given in General Proficiency & Ethics Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practic</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MATH102B</td>
<td>MATHEMATICS-II</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>PHY102B</td>
<td>ENGINEERING PHYSICS-II</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>ME101 B</td>
<td>MANUFACTURING PROCESSES (Gr-B)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>CH101 B</td>
<td>ENGINEERING CHEMISTRY (Gr-A)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>EE101B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING (Gr-B)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>CSE101B</td>
<td>INTRODUCTION TO COMPUTERS & PROGRAMMING (Gr-A)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>ECE102B</td>
<td>BASICS OF ELECTRONICS ENGINEERING OR BASICS OF BIO TECHNOLOGY OR ORAL COMMUNICATION SKILLS OR BASICS OF CIVIL ENGINEERING</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>ME103B</td>
<td>ENGINEERING GRAPHICS & DRAWING (Gr-B)</td>
<td>1</td>
<td></td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>ME105B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING (Gr-A)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>PHY104B</td>
<td>PHYSICS LAB-II</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>ME 107B</td>
<td>WORKSHOP PRACTICE (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CH103B</td>
<td>CHEMISTRY LAB (Gr-A)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>9.</td>
<td>EE103B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CSE103B</td>
<td>COMPUTER PROGRAMMING LAB (Gr-A)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10.</td>
<td>ME109B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING LAB (Gr-A)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>11.</td>
<td>GP 102B</td>
<td>GENERAL PROFICIENCY & ETHICS</td>
<td>-</td>
<td>-</td>
<td></td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Gr-B</td>
<td></td>
<td>17</td>
<td>5</td>
<td>12</td>
<td>245</td>
<td>375</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Gr-A</td>
<td></td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>230</td>
<td>450</td>
<td>170</td>
</tr>
</tbody>
</table>

Note:
1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
2. Each student has to undergo a workshop at least 4 weeks (80-100 hours) at the end of II semester during summer vacations. Out of the four weeks, two weeks would be dedicated to general skills and two weeks training for specialized discipline/department. The evaluation of this training shall be carried out in the III semester.
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
5. The elective course HUM 102B ORAL COMMUNICATION SKILLS is deleted w.e.f session 2013-2014.
6. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 2nd YEAR (SEMESTER – III) AUTOMOBILE ENGINEERING

Credit Based Scheme w.e.f. 2013-14

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practic</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MGT 201B</td>
<td>ENGINEERING ECONOMICS (Common for all branches Except BT & BME) (Gr-A)</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>GES 201 B</td>
<td>ENVIRONMENTAL STUDIES (Common for all branches) (Gr-B)</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AE 201B</td>
<td>BASICS OF AUTOMOBILE ENGINEERING</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>AE 203B</td>
<td>ENGINEERING THERMODYNAMICS</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>AE 205B</td>
<td>MECHANICS OF SOLIDS</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ME205B</td>
<td>ENGINEERING MECHANICS (Common with ME & AER)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>AE 207B</td>
<td>FLUID MECHANICS & MACHINARY</td>
<td>3</td>
<td>1</td>
<td></td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>AE 209B</td>
<td>AUTOMOBILE ENGINEERING DRAWING LAB</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>AE 211B</td>
<td>MECHANICS OF SOLIDS LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>AE 213B</td>
<td>COMPUTER AIDED DRAFTING LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>AE 215B</td>
<td>FLUID MECHANICS & MACHINARY LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>AE 217B</td>
<td>AUTOMOBILE WORKSHOP</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>GES 203B</td>
<td>ENVIRONMENTAL STUDIES FIELD WORK (Common for all branches) (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Total

- **Gr-A**
 - 21 | 4 | 12 | 300 | 510 | 90 | 900 | 33 |
- **Gr-B**
 - 20 | 4 | 12 | 275 | 435 | 90 | 800 | 29 |

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency & Ethics Syllabus.
2. *The Environmental studies (GES-201 B & Environment Studies Field work (GES-203B) are compulsory & qualifying courses.
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
5. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 2nd YEAR (SEMESTER – IV) AUTOMOBILE ENGINEERING

Credit Based Scheme w.e.f. 2013-14

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>Theory Practic al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MGT 201 B</td>
<td>ENGINEERING ECONOMICS (Except BT & BME) (Gr-B) OR ENVIRONMENTAL STUDIES (Gr-A)</td>
<td>4 - -</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GES 201 B</td>
<td></td>
<td>3 - -</td>
<td></td>
<td>75 75 - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AE 202B</td>
<td>THEORY OF MACHINE</td>
<td>3 1</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AE 204B</td>
<td>AUTOMOBILE PETROL ENGINES</td>
<td>3 1</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AE 206B</td>
<td>AUTOMOBILE DIESEL ENGINES</td>
<td>3 1</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AE 208B</td>
<td>COMBUSTION AND HEAT TRANSFER</td>
<td>3 1</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AE 210B</td>
<td>AUTOMOBILE ENGINEERING MATERIALS</td>
<td>3 1</td>
<td>25 75 -</td>
<td>100 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AE 212B</td>
<td>THEORY OF MACHINE LAB</td>
<td>- -</td>
<td>20 -</td>
<td>30 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AE 214B</td>
<td>AUTOMOBILE ENGINE COMPONENT LAB</td>
<td>- -</td>
<td>20 -</td>
<td>30 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AE 216B</td>
<td>COMBUSTION AND HEAT TRANSFER LAB</td>
<td>- -</td>
<td>20 -</td>
<td>30 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AE 218B</td>
<td>AUTOMOBILE ENGINEERING MATERIALS LAB</td>
<td>- -</td>
<td>20 -</td>
<td>30 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GES 203 B</td>
<td>ENVIRONMENTAL STUDIES FIELD WORK (Gr-A)</td>
<td>- -</td>
<td>- -</td>
<td>25 25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GPAE 202B</td>
<td>GENERAL PROFICIENCY & ETHICS</td>
<td>1 - -</td>
<td>- 75</td>
<td>75 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

- Gr-B 20 5 9 230 450 195 875 30
- Gr-A 19 5 9 205 375 195 775 26

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency & Ethics Syllabus.
2. *The Environmental studies (GES-201 B & Environment Studies Field work (GES-203B) are compulsory & qualifying courses.*
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
5. Each students has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carried out in the V semester.
6. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 3\(^{rd}\) YEAR (SEMESTER – V) AUTOMOBILE ENGINEERING

Credit Based Scheme w.e.f. 2014-15

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AE 301B</td>
<td>ENGINEERING METROLOGY & MEASUREMENT</td>
<td>3 L 1 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AE 303B</td>
<td>AUTOMOTIVE CHASSIS</td>
<td>4 L 0 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AE 305B</td>
<td>AUTOMOTIVE ELECTRICAL & ELECTRONICS</td>
<td>4 L 0 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AE 307B</td>
<td>AUTOMOTIVE ENGINE COMPONENT DESIGN</td>
<td>3 L 1 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AE 309B</td>
<td>MANUFACTURING PROCESS FOR AUTOMOTIVE COMPONENTS</td>
<td>4 L 0 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AE 311B</td>
<td>VEHICAL BODY ENGINEERING</td>
<td>3 L 1 T 0 P</td>
<td>25 75</td>
<td>100 4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AE 313B</td>
<td>AUTOMOTIVE CHASSIS COMPONENT LAB</td>
<td>- L - T 2 P</td>
<td>20 30</td>
<td>50 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AE 315B</td>
<td>AUTOMOTIVE ELECTRICAL & ELECTRONICS LAB</td>
<td>- L - T 2 P</td>
<td>20 30</td>
<td>50 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AE 317B</td>
<td>COMPUTER AIDED VEHICAL DRAFTING LAB</td>
<td>- L - T 2 P</td>
<td>20 30</td>
<td>50 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AE 319B</td>
<td>PROFESSIONAL TRAINING-I</td>
<td>- L - T 2 P</td>
<td>50 -</td>
<td>50 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | 21 L 3 T 8 P | 260 L 450 T 90 P | 800 | 29 |

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.

2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.

3. Electronics gadgets including Cellular phones are not allowed in the examination.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)
SCHEME OF STUDIES & EXAMINATIONS
B.Tech. 3rd YEAR (SEMESTER – VI) AUTOMOBILE ENGINEERING
Credit Based Scheme w.e.f. 2014-15

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AE 302B</td>
<td>AUTOMOTIVE FUELS & LUBRICANTS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 304B</td>
<td>AUTOMOTIVE TRANSMISSION</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 306B</td>
<td>AUTOMOTIVE INSTRUMENTATION & EMBEDDED SYSTEMS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 308B</td>
<td>AUTOMOTIVE CHASSIS DESIGN</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 310B</td>
<td>AUTOMOTIVE POLLUTION & CONTROL</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 312B</td>
<td>TWO & THREE WHEELERS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HUM 302B</td>
<td>REPORT WRITING SKILLS (Common for all branches)</td>
<td>1 -</td>
<td>25 50</td>
<td>-</td>
<td>75</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AE 314B</td>
<td>TWO & THREE WHEELERS LAB</td>
<td>- -</td>
<td>20 30</td>
<td>50</td>
<td>80</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 316B</td>
<td>COMPUTER AIDED CHASSIS DESIGN LAB</td>
<td>- -</td>
<td>20 30</td>
<td>50</td>
<td>80</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 318B</td>
<td>COMPUTER AIDED ENGINE DESIGN LAB</td>
<td>- -</td>
<td>20 30</td>
<td>50</td>
<td>80</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AE 320B</td>
<td>AUTOMOTIVE ENGINE TESTING & POLLUTION MEASUREMENT LAB</td>
<td>- -</td>
<td>20 30</td>
<td>50</td>
<td>80</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HUM 304B</td>
<td>ORAL PRESENTATION SKILLS (Common for all branches)</td>
<td>- -</td>
<td>20 30</td>
<td>50</td>
<td>80</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GPAE 302B</td>
<td>GENERAL PROFICIENCY & ETHICS</td>
<td>1 -</td>
<td>75 75</td>
<td>-</td>
<td>150</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>19 6</td>
<td>10 275</td>
<td>500</td>
<td>225</td>
<td>1000</td>
<td>32</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. Each student has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carried out in the VII semester.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)
SCHEME OF STUDIES & EXAMINATIONS
B.Tech. Final YEAR (SEMESTER – VII) AUTOMOBILE ENGINEERING
Credit Based Scheme w.e.f. 2015-16

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AE 401B</td>
<td>AUTOMOTIVE SAFETY</td>
<td>4 - 2</td>
<td>25 - 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>AE 403B</td>
<td>VEHICLE PERFORMANCES AND TESTING</td>
<td>4 - 2</td>
<td>25 - 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AE 405B</td>
<td>VEHICLE DYNAMICS</td>
<td>3 - 1</td>
<td>25 - 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AE 407B</td>
<td>VEHICLE MAINTANANCE</td>
<td>4 - 2</td>
<td>25 - 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AE 409B</td>
<td>OPEN ELECTIVE</td>
<td>4 - 2</td>
<td>25 - 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AE 411B</td>
<td>VEHICLE MAINTANANCE & RECONDITIONING</td>
<td>- - 2</td>
<td>20 - 30</td>
<td>30 - 50</td>
<td>70</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AE 413B</td>
<td>PROJECT</td>
<td>- - 4</td>
<td>100 - -</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>AE 415B</td>
<td>PROFESSIONAL TRAINING-II</td>
<td>- - 2</td>
<td>50 - -</td>
<td>-</td>
<td>50</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19 10</td>
<td>315 375</td>
<td>60 750</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
2. Students will be permitted to opt for any one elective run by the other department. However, the department shall offer those elective for which they have expertise. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. The minimum strength of the students should be twenty to run an elective course.
3. Assessment of Professional Training-II, undergone at the end of VI semester, will be based on seminar, viva-voce, report and certificate of Professional Training obtained by the student from the industry, institute, research lab, training center etc.
4. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
5. Electronics gadgets including Cellular phones are not allowed in the examination.
6. The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher). Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her. The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.

List of Open Electives

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEI 623B</td>
<td>ENTREPRENEURSHIP</td>
<td>6</td>
<td>BT 401B</td>
<td>BIOINFORMATICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BME 451B</td>
<td>MEDICAL INSTRUMENTATION</td>
<td>7</td>
<td>AE 417B</td>
<td>MODERN VEHICLE TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ECE 305B</td>
<td>CONSUMER ELECTRONICS</td>
<td>8</td>
<td>CE 451B</td>
<td>POLLUTION & CONTROL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EE 451B</td>
<td>ENERGY AUDIT</td>
<td>9</td>
<td>CSE 411B</td>
<td>MANAGEMENT INFORMATION SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EEE 457B</td>
<td>ENERGY RESOURCES & TECHNOLOGY</td>
<td>10</td>
<td>IT 413 B</td>
<td>CYBER SECURITY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
2. Students will be permitted to opt for any one elective run by the other department. However, the department shall offer those elective for which they have expertise. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. The minimum strength of the students should be twenty to run an elective course.
3. Assessment of Professional Training-II, undergone at the end of VI semester, will be based on seminar, viva-voce, report and certificate of Professional Training obtained by the student from the industry, institute, research lab, training center etc.
4. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
5. Electronics gadgets including Cellular phones are not allowed in the examination.
6. The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher). Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her. The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonipat)
SCHEME OF STUDIES & EXAMINATIONS
B.Tech. Final YEAR (SEMESTER – VIII) AUTOMOBILE ENGINEERING
Credit Based Scheme w.e.f. 2015-16

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AE 402B</td>
<td>EMERGING AUTOMOTIVE TECHNOLOGIES</td>
<td>4</td>
<td>0</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>AE 404B</td>
<td>AUTOMOTIVE WORKSHOPS TOOLS AND EQUIPMENTS</td>
<td>4</td>
<td>0</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>ELECTIVE I</td>
<td></td>
<td>4</td>
<td>-</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>ELECTIVE II</td>
<td></td>
<td>4</td>
<td>-</td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>AE 406B</td>
<td>AUTOMOTIVE WORKSHOPS TOOLS AND EQUIPMENTS LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td></td>
<td>30 50</td>
</tr>
<tr>
<td>6</td>
<td>AE 408B</td>
<td>SEMINAR</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AE 413B</td>
<td>PROJECT</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>75</td>
<td></td>
<td>125 200</td>
</tr>
<tr>
<td>8</td>
<td>GFAE 402B</td>
<td>GENERAL FITNESS FOR THE PROFESSION</td>
<td>1</td>
<td>-</td>
<td></td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>17</td>
<td>0</td>
<td>12</td>
<td>245</td>
<td></td>
<td>300 255 800</td>
</tr>
</tbody>
</table>

ELECTIVE I

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 432B</td>
<td>AUTOMOTIVE AERODYNAMICS</td>
</tr>
<tr>
<td>AE 434B</td>
<td>SPECIAL TYPE OF VEHICLE</td>
</tr>
<tr>
<td>AE 436B</td>
<td>AUTOMOTIVE AIR CONDITIONING</td>
</tr>
<tr>
<td>AE 438B</td>
<td>MECHATRONICS</td>
</tr>
<tr>
<td>AE 440B</td>
<td>NON DESTRUCTIVE TESTING METHODS</td>
</tr>
</tbody>
</table>

ELECTIVE II

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 442B</td>
<td>TRANSPORT MANAGEMENT AND AUTOMOTIVE INDUSTRY</td>
</tr>
<tr>
<td>AE 444B</td>
<td>ERGONOMICS ENGINEERING</td>
</tr>
<tr>
<td>AE 446B</td>
<td>VIBRATION AND NOISE CONTROL</td>
</tr>
<tr>
<td>AE 448B</td>
<td>DESIGN OF JIGS, FIXTURE AND PRESS TOOLS</td>
</tr>
<tr>
<td>AE 450B</td>
<td>QUALITY CONTROL AND RELIABILITY ENGINEERING</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Fitness For The Profession Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. The minimum strength of the students should be twenty to run an elective course.
5. The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher). Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her. The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)
SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 1
ST YEAR (SEMESTER – I) (Common for all branches)

Credit Based Scheme w.e.f. 2012-13

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practic</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HUM 101B</td>
<td>COMMUNICATIVE ENGLISH</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>MATH 101B</td>
<td>MATHEMATICS-I</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PHY 101B</td>
<td>ENGINEERING PHYSICS</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>ME101B</td>
<td>MANUFACTURING PROCESSES (Gr-A)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>CH101 B</td>
<td>ENGINEERING CHEMISTRY (Gr-B)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>EE101B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING (Gr-A)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>CSE101B</td>
<td>INTRODUCTION TO COMPUTERS & PROGRAMMING (Gr-B)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>ME103B</td>
<td>ENGINEERING GRAPHICS & DRAWING (Gr-A)</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>ME105B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING (Gr-B)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>PHY103B</td>
<td>PHYSICS LAB-I</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>ME 107B</td>
<td>WORKSHOP PRACTICE (Gr-A)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>40</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CH103B</td>
<td>CHEMISTRY LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>EE103B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING LAB (Gr-A)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CSE103B</td>
<td>COMPUTER PROGRAMMING LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>ME109B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING LAB (Gr-B)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Note:

5. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of sports is given in General Proficiency & Ethics Syllabus.

6. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

7. Electronics gadgets including Cellular phones are not allowed in the examination.

8. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
OBJECTIVE
The course aims at developing the desired language (English) skills of students of engineering and technology so that they become proficient in communication to excel in their professional lives. The course has been designed so as to enhance their linguistic and communicative competence.

COURSE CONTENT

UNIT I
COMMUNICATIVE GRAMMAR:
A) Spotting the errors pertaining to tenses, conditional sentences, Concord – grammatical concord, notional concord and the principle of proximity b/w subject and verb
B) Voice, Reported Speech.

UNIT II
LANGUAGE THROUGH LITERATURE:
Linguistic Reading of the following texts
A) ‘Kabuliwallah’ by Rabindranath Tagore*
B) ‘Am I Blue?’ by Alice Walker*
C) ‘If You are Wrong, Admit It’ by Dale Carnegie*
D) ‘Engine Trouble’ by R.K. Narayan*
The prescribed texts will be used as case studies for various components of the syllabus. * the Source is given in the list of Texts Books given below.

UNIT III
GROUP COMMUNICATION:
A) Communication: concept, Process and Barriers
B) Communicating using Standard Pronunciation with the help of IPA
C) Formal Speaking with peers (e.g. discussion, talks on current issues in a class)
B) Writing official letters on issues concerning students and social life
C) Writing small reports on scientific issues, IT issues, University fests/programmes
C) E-mail writing and writing for web

UNIT IV
COMMUNICATIVE CREATIVITY:
A) Comprehension: Extracting, interpreting, summarizing, reviewing and analyzing the prescribed texts.
B) Composition: Developing themes and situations through role play activities or dialogue writing.

TEXT BOOKS
2. Communicative English for Engineers and Professionals by Nitin Bhatnagar & Mamta Bhatnagar New Delhi: Pearson / Longman

SUGGESTED READING
1. Pink, M.A. and S.E. Thomas. *English Grammar, Composition and Correspondence*. Delhi: S. Chand and Sons

SCHEME OF END SEMESTER EXAMINATION (MAJOR TEST)
THEORY
1. The duration of the exam will be 3 hours.

2. The Question Paper for this theory course shall have seven questions in all covering all the units of the syllabus.

3. The student is required to attempt all the seven questions.

4. Questions No. 1 based on Unit I is of 15 marks. It may be in the form of ‘Do as directed: trace the error, choose the correct alternative, supply the correct alternative/s, change the voice, convert the speech from direct to indirect or vice-versa’.

5. Question no 2 and 3 based on prescribed texts in Unit II. Question no 2 of 10 marks is to evaluate the comprehension of the text through short answer questions or a long answer question to assess the students’ reading comprehension, interpretative and analytical abilities. Question no 3 of 15 marks will judge the linguistic aspect of the text such as using a particular word in its various syntactic forms like noun, adjective, verb etc.; matching the lists of words and their explanation; providing opposite/similar meanings and other grammar components prescribed in Unit I of the syllabus.

6. Question no 4 based on Unit III is of 10 marks. It may be in the form of transcription of words given, describe an event, classmate, discuss an issue etc.

7. Question no 5 based on Unit III is of 10 marks. It requires the student to frame either a small report on a topic given or write the given official letter, or e-mail a message.

8. Question no 6 based on Unit IV is of 10 marks. It evaluates the Comprehension and Interpretation of the texts prescribed in Unit II. The vocabulary, general understanding and interpretation of the content may be evaluated in the form of question answer exercise, culling out important points, suggesting a suitable topic/title, summarising and interpreting.

9. Question No. 7 based on Unit IV is of 5 marks. It requires the student to develop a hypothetical situation in a dialogue form, or to develop an outline, key expression, for role play activity.
UNIT I

INFINITE SERIES: Convergence and divergence, Comparison, D’ Alembert’s ratio, Integral, Raabe’s, Logarithmic and Cauchy root tests, Alternating series, Absolute and conditional convergence. Applications of Differentiation: Taylor’s and Maclaurin’s series, Asymptotes, Curvature Asymptotes.

UNIT II

PARTIAL DIFFERENTIATION & ITS APPLICATIONS: Functions of two or more variables; partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions, Jacobians, Higher order partial derivatives.

Homogeneous functions, Euler’s theorem, Taylor’s series for functions of two variables (without proof), maxima-minima of function of two variables, Lagrange's method of undetermined multipliers, Differentiation under integral sign.

UNIT III

APPLICATIONS OF SINGLE & MULTIPLE INTEGRATION: Applications of single integration to find volume of solids and surface area of solids of revolution. Double integral, change of order of integration, Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves and volume of solids of revolution.

Triple integral, volume of solids, change of variables, Beta and gamma functions and relationship between them.

UNIT IV

VECTOR CALCULUS: Differentiation of vectors, scalar and vector point functions Gradient of a scalar field and directional derivative, divergence and curl of a vector field and their physical interpretations.

Integration of vectors, line integral, surface integral, volume integral, Green, Stoke's and Gauss theorems (without proof) and their simple applications.

TEXT BOOKS:

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

PHYSICAL OPTICS:
Interference: Division of wave front-Fresnel’s Biprism, Division of amplitude – Newton’s rings, Michelson interferometer, applications.
Diffraction: Difference between Fraunhofer and Fresnel diffraction, Fraunhofer diffraction through a slit, Plane transmission diffraction grating and its spectra, dispersive and resolving powers.
Polarization: Polarised and unpolarized light, double refraction, Nicol prism, quarter and half wave plates, Plane, Elliptically & circularly polarised light, Polarimetry: Biquartz and Laurent’s half-shade polarimeters.

UNIT II

Introduction, Propagation of light in fibres, Types of fiber (pulse & continuous), numerical aperture, Modes of propagation in optical fibre, application of optical fibre.

ACOUSTIC OF BUILDINGS: Introduction. Reverberation, Sabine’s formula for reverberation time, Absorption coefficient and its measurements, factors affecting the architectural acoustics and their remedy, Sound absorbing materials.

UNIT III

TRANSMISSION OF HEAT AND THERMAL RADIATION
Modes of transmission of heat, Thermal conductivity, Rectilinear flow of heat through a rod, Radial flow of heat through a spherical shell, determination of Thermal conductivity of good and bad conductors.
Black body, Emissive and Absorptive Powers, Wein’s Displacement Law, Kirchhoff’s Law, Stefan’s Law, Determination of Stefan’s Constant.

UNIT IV

NUCLEAR & ELEMENTARY IDEA OF PARTICLE PHYSICS
Outline of interaction of charged particles and of Gamma-rays with matter. Counters: Gas filled counters (Ionization Chamber, Proportional Counter and G M Counter), Detector: Scintillation detector, Semiconductor detectors (p-n junction detector), Biological effects of nuclear radiation.
Introduction to elementary particles, Interaction in particle physics: strong, electromagnetic, weak and gravitational.

TEXT BOOKS:
1. A text book of Optics – Brij Lal and Subramanyam
2. Perspectives of Modern Physics – Arthur Beiser (TMH)
3. Modern Engineering Physics – A.S. Vasudeva (S. Chand)
6. Engineering Physics by S.P. Taneja (Chand Pub.)

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

UNIT III

INTRODUCTION TO MACHINE TOOLS: Specifications and Uses of commonly used Machine Tools in a Workshop such as Lathe, Shaper, Planer, Milling, Drilling, Slotter, Introduction to Metal Cutting. Nomenclature of a Single Points Cutting Tool and Tool Wear, Mechanics of Chips Formation, Type of Chips, Use of Coolants in machining.

UNIT IV

TEXT BOOKS:

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

THERMODYNAMICS: Second law, concept of entropy, entropy change for ideal gas, free energy and work functions, free energy change, chemical potential, Gibb’s Helmholtz equation, Clausius-Clapeyron equation. Related numerical problems with above topics.

PHASE-RULE: Terminology, Derivation of Gibb’s Phase Rule equation, One component system (water system), Two components systems, system with Eutectic point (Pb-Ag), system with congruent melting point (Zn-Mg), system with incongruent melting point (Na-K). Applications of above systems. Elementary idea of Zone refining and Zone levelling.

UNIT II

WATER AND ITS TREATMENT: Hardness of water and its determination, units of hardness, alkalinity of water and its determination, related numerical problems, water softening, ion-exchange process, mixed bed demineralisation, desalination of water by using different methods.

CORROSION AND ITS PREVENTION: Galvanic & concentration cell, dry and wet corrosion, Electrochemical theory of corrosion, Galvanic corrosion, Pitting corrosion, differential aeration corrosion, water line corrosion, stress corrosion, factor effecting corrosion, Preventing measures, electroless Plating of Ni and Cu.

UNIT III

POLYMERS AND POLYMERIZATION: Organic polymers, polymerisation, various types of polymerisation, effect of structure on properties of polymers, preparation, properties and technical applications of thermoplastics (PE, PVC, PVA, Teflon), thermosets (PF, UF & MF) and elastomers (Synthetic Rubber including SBR, Buna-S, Buna-N, Thiokol & Polyurethanes), Inorganic polymers (general properties), Glass transition temperature, silicones.

COMPOSITE MATERIALS & THEIR APPLICATION: optical fibres, Fullerenes, organic electronic material, composite materials & their classification, constituents of composites, role of interface in composite performance and durability, fiber –Reinforced composite, advantage and applications of composites.

UNIT IV

LUBRICANTS AND FUELS: Friction, mechanism of lubrication, classification and properties of lubricants and selection of Lubricants, Definition and classification of fuel, Calorific value and methods of its determination.

Analytical methods: Thermal methods: Principle, method and application of TGA,DTA & DSC, interaction of E.M radiation with a molecule and origin of spectrum, Vibrational & electronic spectra (Experimental details are excluded), spectrophotometry, conductometric titrations, elementary discussion on Flame-photometry.

TEXT/REFERENCE BOOKS:

5. Engineering Chemistry, ShashiChawla (DhanpatRai and co.)
7. Engineering chemistry, S.S Dara (S.chand&co.)

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
EE 101B PRINCIPLES OF ELECTRICAL ENGINEERING

B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

D.C. CIRCUIT ANALYSIS: Basic concepts of electric circuits, Ohm’s Law, Independent energy sources, Dependent energy sources, passive elements, circuit properties, Kirchoff’s laws, applications of Kirchoff’s laws, Nodal and Loop methods of Analysis, Superposition Theorem, Thevenin’s Theorem, Norton’s Theorem, Reciprocity Theorem, Maximum Power Transfer Theorem, Millman’s Theorem, Star-Delta or delta-star transformation, Applications of network theorems P-spice for DC circuit analysis.

UNIT II

A.C. CIRCUITS: Sinusoidal signal, Phasors, polar & rectangular, exponential & trigonometric representations, Resistance, Inductance & Capacitance components, behavior of these components in A.C. circuits, Phasor relationship for circuit elements, Impedance & Admittance, instantaneous & peak values, average and RMS values, active power, reactive power, apparent power, power factor, complex power, behavior of AC series, parallel circuits, RL, RC & RLC A.C. circuits (series and parallel), Resonance-series and parallel R-L-C Circuits, Q-factor, cut-off frequencies & bandwidth.

UNIT III

THREE PHASE CIRCUITS: Phase and line voltages and currents, balanced star and delta circuits, power equation, measurement of power by two wattmeter method. Measuring Instruments: Principle, Construction & working of moving coil type voltmeter & ammeter, moving iron type voltmeter & ammeter, Electrodynamic type wattmeter, single-phase induction type energy meter.

UNIT IV

TEXT BOOKS:

2. Electrical Technology (Vol-I): B.L Theraja & A K Theraja, S.Chand
5. Basic Electrical Engineering, S.N. Singh, PHI

REFERENCE BOOKS:

1. Electrical Engineering Fundamentals: Deltoro, PHI
2. Basic Electrical Engineering (TMH WBUT Series), Abhijit Chakrabarti & Sudipta Nath, TMH
4. Introduction to Electrical Engineering, M.S. Naidu & S, Kamakshaih, TMH

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

AN INTRODUCTION OF COMPUTER SYSTEM: Anatomy of a digital Computer, Different Units of Computer System, Classification of Computer Systems, Radix Number systems. Binary codes: BCD, Gray, EBCDIC, ASCII

UNIT II

PROGRAMMING LANGUAGES AND ALGORITHMS: Machine, Assembly and High Level Language; Assembler, Linker, Loader, Compiler, Interpreter, debuggers. Programming fundamentals: problem definition, algorithms, flowcharts and their symbols

COMPUTER NETWORKS: Basic concepts of Computer Networks, Working of Internet and its Major features. Network Topologies: Bus, Star, Ring, Hybrid, Tree, Complete, Irregular; Types of Networks: LAN, MAN and WAN.

ELECTRONIC MAIL: advantages and disadvantages, e-mail addresses, message components, message composition, mailer features, E-mail inner workings, E-mail management, Newsgroups, mailing lists, chat rooms.

UNIT III

BASICS OF ‘C’ LANGUAGE: C Fundamentals, Basic data types, local and external variables and scope, formatted input/output, expressions, selection statements, loops and their applications; arrays, functions, recursive functions, pointers and arrays. Strings literals, arrays of strings; applications, Structures, Unions and Enumerations.

UNIT IV

ADVANCED FEATURES OF ‘C’ LANGUAGE: Preprocessor directives, macro definition, conditional compilation, storage classes, type’s qualifiers, Low level programming (Bitwise operators, Bit fields in structures, other low level techniques), error handling, file operations(low level/high level).

BOOKS:

1. The C Programming Language by Dennis M Ritchie, Brian W. Kernigham, 1988, PHI.
3. Information technology, Dennis P. Curtin, Kim Foley, Kunal Sen, Cathleen Morin, 1998, TMH
4. Theory and problem of programming with C, Byron C Gottfried, TMH

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

BASICS OF ENGINEERING GRAPHICS AND DRAWING: Drawing Papers, Mini drafter, Pencils. Drawing Paper Layout, Title Block, Types of Lines, Lettering, Dimensioning, types of Projections; First and Third Angle systems of Orthographic Projections, Projection of Points in different Quadrants.

PROJECTIONS OF STRAIGHT LINES: Contained by both Reference Planes, Contained by one and inclined to other Reference Plane, Contained by one and Parallel to other Reference Plane, Parallel to both Reference Plane, Perpendicular to one of the Reference Planes, Inclined to one Plane but Parallel to the other Reference Planes, Inclined to both the Reference Planes, True Length of a Line and its Inclination with Reference Planes, Traces of a Line.

UNIT II

PROJECTIONS OF PLANES: Parallel to one Reference Plane, Inclined to one Plane but Perpendicular to the other, Inclined to both Reference Planes.

PROJECTIONS OF POLYHEDRAL SOLIDS AND SOLIDS OF REVOLUTION: in simple positions with axis perpendicular to a Reference Plane, with axis parallel to both Reference Planes, with axis parallel to one Reference Plane and inclined to the other Reference Plane, Projections of sections of Prisms, Pyramids, Cylinders and Cones, True Shape of Sections of Solids.

UNIT III

DEVELOPMENT: Development of Surfaces of various Solids objects.

FREE HAND SKETCHING: Orthographic Views from Isometric, Views of Simple Machine Components such as Brackets, Bearing Blocks, Guiding Blocks and Simple Couplings and Pipe Joints.

UNIT IV

ORTHOGRAPHIC DRAWINGS: Screw Threads, Bolts, Nuts and Washers, Bolted, Riveted and Welded Joints

TEXT BOOKS:
1. Engineering Drawing: MB Shah and BC Rana, Pearsons

REFERENCE BOOKS:
1. A Text Book of Engineering Drawing: RK Dhawan, S Chand & Company

NOTE:
1. For class work, the students shall be assigned to prepare at least ten drawing sheets covering all units and each topic of the syllabus.
2. For practical examination, the examiner will set a question paper containing total eight questions, two questions from each unit covering each topic of the syllabus; students are required to attempt five questions at least one from each unit.
UNIT I

THERMODYNAMICS: Elementary definitions in thermodynamics, fundamentals of first and 2nd law of thermodynamics- concept of internal energy, enthalpy and entropy, heat pump and refrigerator, elementary numerical problems

PROPERTIES OF STEAM & BOILERS: properties of steam, use of steam tables and mollier diagram, measurement of dryness fraction of steam, Carnot and Rankin cycle, elementary numerical problems. Classification of boilers, Comparison of water and fire tube boilers mounting and accessories with their functions, Constructional and operational details of Cochran and Babcock and Wilcox boilers, elementary numerical problems

STEAM TURBINES AND CONDENSERS: Classification of turbines and their working principles, Types of condensers and their uses

UNIT II

REFRIGERATION AND AIR CONDITIONING: Rating of refrigeration machine, coefficient of performance, simple vapor compression cycle, fundamentals of air conditioning, use of Psychrometric charts

UNIT III

WATER TURBINES AND PUMPS: Introduction, Classification, Construction details and working principle of Pelton, Francis and Kaplan turbines, Classification of water pumps and construction detail & working principle of centrifugal pump

SIMPLE LIFTING MACHINES: Definition of machine, Velocity ratio, Mechanical advantage, Efficiency, Laws of machines, Reversibility of machine, Wheel and axle, Differential pulley block, Single, double and triple start worm and worm wheel, Single and double purchase winch crabs, Simple and compound screw jacks, elementary numerical problems

UNIT IV

INTRODUCTION TO POWER TRANSMISSION AND DEVICES: Belt drive, Rope drive, Chain drive, Types of gear and Gear train,

Stresses and strains: Introduction, Concept & types of Stresses and strains, Poisson’s ratio, stresses and strains in simple and compound bars under axial loading, Stress-strain diagrams, Hooks law, Elastic constants & their relationships, Concept of shear force and bending moments in beams, elementary numerical problems.

TEXT BOOKS:

2. Engineering Thermodynamics – C.P. Arora, Pub. - TMH, New Delhi

REFERENCE BOOKS:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
Note: Students will be required to perform 10 experiments in a semester.

LIST OF EXPERIMENTS

1. To find the wavelength of sodium light by using Newton's rings experimental setup.
2. To find the wavelength of sodium light by Fresnel's biprism experimental setup.
3. To find the wavelength of various colours of white light with the help of a plane transmission diffraction grating.
4. To find the refractive index and Cauchy's constants of a prism by using spectrometer.
5. To find the wavelength of sodium light by using Michelson interferometer.
6. To find the resolving power of a telescope.
7. To find the pitch of a screw using He-Ne laser.
8. To find the specific rotation of sugar solution by using a polarimeter.
9. To compare the capacitances of two capacitors by De’sauty bridge.
10. To find the flashing and quenching potentials of Argon and also to find the capacitance of unknown capacitor.
11. To study the photo conducting cell and hence to verify the inverse square law.
12. To find the temperature co-efficient of resistance by using platinum resistance thermometer and Callender and Griffith bridge.
13. To find the frequency of A.C. mains by using sonometer.
14. To find the velocity of ultrasonic waves in non-conducting medium by piezo-electric method.
15. To determine the value of Stefan’s constant.
16. To find the coefficient of thermal conductivity of a good conductor by Searle’s method.
17. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton method.

RECOMMENDED BOOKS:

1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)
ME 107B WORKSHOP PRACTICE
B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Class Work : 40 Marks
Examination : 60 Marks
Total : 100 Marks
Duration of Examination : 3 Hours

LIST OF EXPERIMENTS / JOBS

1. To study different types of measuring tools/instruments used in metrology and determine least counts of vernier calipers, micrometers and vernier height gauges.
2. To study different types of machine tools (lathe, shaper, planer, slotter, milling, drilling machines).
3. To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.
4. To study different types of fitting tools and marking tools used in fitting practice.
5. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.
6. To prepare joints for welding suitable for butt welding and lap welding.
7. To study various types of carpentry tools and prepare simple types of at least two wooden joints.
8. To prepare simple engineering components/shapes by forging.
9. To prepare mold and core assembly, to put metal in the mold and fettle the casting.
10. To prepare horizontal surface/vertical surface/curved surface/slots or V-grooves on a shaper/planner.
11. To prepare a job involving side and face milling on a milling machine.
12. To study of CNC lathe, CNC Milling and EDM Machines.

NOTE:
1. At least ten experiments/jobs are to be performed/prepared by students in the semester.
2. At least 8 experiments/jobs should be performed/prepared from the above list, remaining two may either be performed/prepared from the above list or designed and set as per the scope of the syllabus of Manufacturing Processes.
1. Determination of Ca++ and Mg++ hardness of water sample using EDTA solution.
2. Determination of alkalinity of water sample.
3. Determination of dissolved oxygen (DO) in the given water sample.
4. To find the melting and eutectic point for a two component system by using method of cooling curve.
5. Determination of viscosity of lubricant by red wood viscometer (No. 1 & No. 2).
6. To determine Flash point & Fire point of an oil by Pensky-Marten’s flash point apparatus and by Abel’s closed cup apparatus.
7. To prepare Phenol-formaldehyde and urea-formaldehyde resin.
8. To find out saponification No. of an oil.
9. Determination of concentration of KMnO4 solution spectrophotometrically.
10. Determination of strength of HCl solution by titrating it against NaOH solution conductometrically.
11. To determine amount of sodium and potassium in a given water sample by flame photometer.
12. Estimation of total iron in an iron alloy.

SUGGESTED BOOKS:

2. Essential of Experimental Engineering chemistry, Shashi Chawla, Dhanpat Rai Publishing Co.

NOTE:

1. The student will be required to perform 10 experiments/exercises from the above list and any other two experiments designed by the department based on the theory course (course code101B Course Name Chemistry).
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.
3. Electronic gadgets including Cellular phones are not allowed in the examination.
EE 103B PRINCIPLES OF ELECTRICAL ENGINEERING LAB

B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>--</td>
<td>2</td>
<td>1</td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

1. To verify KCL and KVL.
2. To verify Thevenin’s & Norton’s Theorems.
3. To verify maximum power transfer theorem in D.C. Circuit.
4. To verify reciprocity theorem.
5. To verify Superposition theorem.
6. To study frequency response of a series R-L-C circuit and determine resonant frequency & Q-factor for various values of R, L, C.
7. To study frequency response of a parallel R-L-C circuit and determine resonant frequency & Q-factor for various values of R, L, C.
8. To perform direct load test of a transformer and plot efficiency Vs load characteristic.
9. To perform direct load test of a D.C. shunt generator and plot load voltage Vs load current curve.
10. To study various type of meters.
11. Measurement of power by three voltmeters/three ammeters method.
12. Measurement of power in a three phase system by two watt meter method.

NOTE:

1. At least 10 experiments are to be performed by students in the semester.
2. At least 8 experiments should be performed from the above list; remaining two experiments may either be performed from the above list or designed and set by the Dept. as per the scope of the syllabus of EE101B.
LIST OF PRACTICAL PROBLEMS

1. Write a program to find the largest of three numbers. (if-then-else)
2. Write a program to find the largest number out of ten numbers (for-statement).
3. Write a program to find the average male height & average female heights in the class (input is in form of sex code, height).
4. Write a program to find roots of quadratic equation using functions and switch statements.
5. Write a program using arrays to find the largest and second largest no. out of given 50 nos.
6. Write a program to multiply two matrices.
7. Write a program to sort numbers using the Quicksort Algorithm.
9. Write a program to check that the input string is a palindrome or not.
10. Write a program to read a string and write it in reverse order.
11. Write a program to concatenate two strings.
12. Write a program which manipulates structures (write, read, and update records).
13. Write a program which creates a file and writes into it supplied input.
14. Write a program which manipulates structures into files (write, read, and update records).

NOTE:

At least 5 to 10 more exercises to be given by the teacher concerned
LIST OF EXPERIMENTS

1. To study Cochran & Babcock & Wilcox boilers.
2. To study the working & function of mountings & accessories in boilers.
3. To study 2-Stroke & 4-Stroke diesel engines.
4. To study 2-Stroke & 4-Stroke petrol engines.
5. To calculate the V.R., M.A. & efficiency of single, double & triple start worm & worm wheel.
6. To calculate the V.R., M.A. & efficiency of single & double purchase winch crabs.
7. To draw the SF & BM diagrams of a simply supported beam with concentrated loads.
8. To study the simple & compound screw jacks and find their MA, VR & efficiency.
9. To study the constructional features & working of Pelton Turbine.
10. To prepare stress-strain diagram for mild steel & cast iron specimens under tension and compression respectively on a Universal testing machine.

NOTE:

1. Total ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining three experiments should be performed as designed & set as per the scope of the syllabus of ME105B: Elements of Mechanical Engineering.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 1st YEAR (SEMESTER – II) (Common for all branches)
Credit Based Scheme w.e.f. 2012-13

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATH102B</td>
<td>MATHEMATICS-II</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PHY102B</td>
<td>ENGINEERING PHYSICS-II</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ME101 B</td>
<td>MANUFACTURING PROCESSES (Gr-B)</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH101 B</td>
<td>OR ENGINEERING CHEMISTRY (Gr-A)</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE101B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING (Gr-B)</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSE101B</td>
<td>OR INTRODUCTION TO COMPUTERS & PROGRAMMING (Gr-A)</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECE102B</td>
<td>BASICS OF ELECTRONICS ENGINEERING OR BASICS OF BIO TECHNOLOGY OR ORAL COMMUNICATION SKILLS OR BASICS OF CIVIL ENGINEERING</td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ME103B</td>
<td>ENGINEERING GRAPHICS & DRAWING (Gr-B) OR ELEMENTS OF MECHANICAL ENGINEERING (Gr-A)</td>
<td>1 4 T P</td>
<td>40 60</td>
<td></td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ME105B</td>
<td></td>
<td>3 1 T P</td>
<td>25 75</td>
<td></td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PHY104B</td>
<td>PHYSICS LAB-II</td>
<td>- - T P</td>
<td>20 30</td>
<td></td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ME 107B</td>
<td>WORKSHOP PRACTICE (Gr-B) OR CHEMISTRY LAB (Gr-A)</td>
<td>- - T P</td>
<td>40 60</td>
<td></td>
<td>100</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH103B</td>
<td></td>
<td>- - T P</td>
<td>20 30</td>
<td></td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EE103B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING LAB (Gr-B) OR COMPUTER PROGRAMMING LAB (Gr-A)</td>
<td>- - T P</td>
<td>20 30</td>
<td></td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSE103B</td>
<td></td>
<td>- - T P</td>
<td>20 30</td>
<td></td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ME109B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING LAB (Gr-A)</td>
<td>- - T P</td>
<td>20 30</td>
<td></td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GP 102B</td>
<td>GENERAL PROFICIENCY & ETHICS</td>
<td>- - T P</td>
<td></td>
<td></td>
<td>50</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total Gr-B 17 5 12 245 375 230 850 29
Gr-A 19 6 8 230 450 170 850 30

Note:
7. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
8. Each student has to undergo a workshop at least 4 weeks (80-100 hours) at the end of II semester during summer vacations. Out of the four weeks, two weeks would be dedicated to general skills and two weeks training for specialized discipline/department. The evaluation of this training shall be carried out in the III semester.
9. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.
10. Electronics gadgets including Cellular phones are not allowed in the examination.
11. The elective course HUM 102B ORAL COMMUNICATION SKILLS is deleted w.e.f session 2013-2014.
12. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
UNIT-I

Linear differential equations of second and higher order: Complete solution, complementary function and particular integral, method of variation of parameters to find particular integral, Cauchy's and Legendre's linear equations, simultaneous linear equations with constant co-efficients.

UNIT-II

LAPLACE TRANSFORMS AND ITS APPLICATIONS: Laplace transforms of elementary functions, properties of Laplace transforms, existence conditions, transforms of derivatives, transforms of integrals, multiplication by t^n, division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function. Inverse transforms, convolution theorem, application to linear differential equations and simultaneous linear differential equations with constant coefficients.

UNIT-III

UNIT-IV

FOURIER SERIES AND FOURIER TRANSFORMS: Euler's formulae, conditions for a Fourier expansion, change of interval, Fourier expansion of odd and even functions, Fourier expansion of square wave, rectangular wave, saw-toothed wave, half and full rectified wave, half range sine and cosine series. Fourier integrals, Fourier transforms, Shifting theorem (both on time and frequency axes), Fourier transforms of derivatives, Fourier transforms of integrals, Convolution theorem, Fourier transform of Dirac-delta function.

TEXT BOOKS:
1. Advanced Engg. Mathematics F Kreyszig

REFERENCE BOOKS:

NOTE:
3. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
4. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

ELECTRODYNAMICS & QUANTUM PHYSICS

Introduction, Displacement current, Equation of continuity, Gauss’s Law in dielectric, applications of Gauss’s law, Maxwell’s equations (both differential and integral form), plane e.m. wave equations in free space, dielectric and conducting medium; Poynting vector. Difficulties with Classical physics, Introduction to quantum mechanics-simple concepts, Black Body radiations, Planck’s Law of radiation and its limitations, Group velocity and phase velocity, Schrodinger wave equations, Application of Schrodinger Equations (Particle in a box).

UNIT II

CRYSTAL STRUCTURE

Space Lattice, unit cell and translation vectors, Miller indices, Bravais lattice structure in 3D, simple crystal structure (NaCl, ZnS and CsCl2), Elementary idea of reciprocal lattice, Ewald Construction, Experimental x-ray diffraction method, Laue method, powder Method.

FREE ELECTION THEORY

Elements of classical free electron theory, Drude’s Theory of Conduction and its limitations, quantum theory of free electrons, Fermi level, Density of states, Fermi-Dirac distribution function, Thermionic emission, Richardson's equation.

UNIT III

BAND THEORY OF SOLIDS

Origin of energy bands, Kronig, Penney Model (qualitative), E-K diagrams, Brillouin Zones, Concept of effective mass and holes, Classification of solids into metals, Semiconductors and insulators, Fermi energy and its variation with temperature, Conduction in Intrinsic and Extrinsic Semiconductors. Hall Effect and its Applications.

UNIT IV

SUPERCONDUCTIVITY & NANOSCIENCE

Introduction to superconductivity, Critical temperature, Meissner Effect, Types of Superconductor, London Equations, penetration depth and coherence length, BCS Theory (qualitative ideas), High temperature superconductors. Concept of Nano-materials, Size dependence of band gap, Top-down and bottom-up approach for preparing nano-materials, MEMS & NEMS, Properties and applications of Fullerene, Graphene, CNT, Nanowires, Nano-composites, Quantum dots.

TEXT BOOKS:

2. Quantum Mechanics – Ghatak & Loknathan.
6. Engineering Physics by S.P. Taneja (Chand Pub.)

REFERENCE BOOKS:

1. Introduction to Solid State Physics (VII Ed.) - Charles Kittel (John Wiley).
2. Quantum Mechanics – Powell and Crasemann (Oxford & IBH)
3. Classical Electrodynamics by S.P. Puri (Narosa)

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

SEMICONDUCTOR PHYSICS, DIODES AND APPLICATIONS: Basic concepts, intrinsic and extrinsic semiconductors, diffusion and drift currents. Hall effect and its applications—pn junction under open circuit, reverse bias and forward bias conditions, p-n junction in the breakdown region, ideal diode, types of diodes—vverter diode, varactor diode, LED and photodiode. Rectifier (half wave and full wave).

AMPLIFIERS: Introduction of different types of BJT amplifiers & their characteristics.

UNIT II

OPERATIONAL AMPLIFIERS: OP-amps, its characteristics, inverting, non-inverting, summing, averaging, scaling, difference, integrator and differentiator amplifiers.

Power Supplies: Introduction and working of switched mode power supply (SMPS), voltage regulator.

UNIT III

DIGITAL ELECTRONICS: Binary, Octal and Hexadecimal number system and conversion, Boolean algebra, truth tables of logic gates AND, OR, NOT, EX-OR, EX-NOR, NAND, NOR AND their implementation using diodes transistors, switches and lamps. Universal gates.

ELECTRONIC INSTRUMENTS: Transducers, Role, importance and applications of general purpose test instruments viz. multi meter (digital and analog), cathode ray oscilloscope (CRO), function/signal generator.

UNIT IV

COMMUNICATION SYSTEM: Modulation, need of modulation, Block diagram of basic communication system, overview of AM, FM and PM.

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION: Nature and scope of Biotechnology.
CELL STRUCTURE AND FUNCTION: Prokaryotes and Eukaryotes- cell wall, cell membrane, nucleus, mitochondria, chloroplast, ribosome, vacuoles, bacteria and viruses: brief descriptions.
Biomolecules: A brief account of structure and functions of carbohydrates, lipids, proteins.

UNIT II

CELL DIVISION: Mitosis and meiosis
GENES AND CHROMOSOMES: Classical- Mendel’s laws and chromosomes, nature of genetic material, DNA and RNA as genetic material, concept of organization of genetic material into chromosomes.
DNA replication: DNA polymerases, replication mechanism.

UNIT III

GENE EXPRESSION: Central dogma, genetic code, gene expression-a brief account of transcription and translation, housekeeping genes, mutations and their molecular basis.
GENETIC ENGINEERING: An introduction to genetic engineering: cloning (vectors, enzymes), DNA and genomic libraries, transgenics, DNA fingerprinting, genomics.

UNIT IV

APPLICATIONS OF BIOTECHNOLOGY : Bioprocess and fermentation technology, cell culture, enzyme technology, biological fuel generation, single cell protein, sewage treatment, environmental biotechnology, biotechnology and medicine, biotechnology in agriculture & forestry industry, food and beverage technology, production of biological inventions, safety in biotechnology.

TEXT/ REFERENCE BOOKS:

- Biotechnology, Smith, Cambridge Press.
- Modern Concepts of Biotechnology, H. D. Kumar, Vikas Publishing House (P) Ltd.
- Elements of Biotechnology, P. K. Gupta, Rastogi Publications.

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
CE 102B BASICS OF CIVIL ENGINEERING

B. Tech. Semester – II (OPTIONAL) Common for all Branches

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

MATERIALS FOR CONSTRUCTION: Stones, Sands, Lime, Bricks, Timber, Steel their Classification and Properties. Different Types of Cement and their Properties, manufacturing of Cement, Concrete, and properties of Concrete, Ingredient of Concrete and Their Functions Component parts of a Building, Foundation, Masonry Works, Doors and Windows, Floors, Roofs, DPC, Building Services

UNIT II

SURVEYING : Introduction to Surveying: Definition, importance, classification of surveys, Principle, Leveling: definitions of terms used in leveling, different types of levels, Contours, Definition, representation of reliefs, horizontal equivalent, contour interval, characteristics of contours, methods of contouring, contour gradient, uses of contour maps, Introduction to GIS, GPS and Remote sensing.

UNIT III

TRANSPORTATION: Various modes and means of transportation, Different types of transport systems, Importance of road transport, History of Road Development, Indian Road Congress. Main features of 20 years road development plans in India, PMGSY Sources of power, estimation of water power, water budget equation, necessity and importance of harnessing small hydro power plants, Dams, Types of Dams, Location and Impact assessment of a Dam project.

UNIT IV

GEOTECHNICAL ENGINEERING: History and its applications, Soil Properties, Classification of Soil, Geotechnical and Geophysical investigation of Soil.

IRRIGATION ENGINEERING: Necessity, advantages, disadvantages, impact of irrigation on human environment, need and development of irrigation in India.

TEXT BOOKS:

1. Basic Civil Engineering, Satheesh Gopi, Pearson.
2. Basic Civil Engineering, Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kr. Jain, Firewall Media

REFERENCE BOOKS:

1. Surveying by Prof. N. Singh, Tata McGraw Hill, New Delhi
2. Basic Civil Engineering, Rakesh Beohar, Firewall Media
4. Water Resources Engineering by Linseley and Franzini

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
NOTE: STUDENTS WILL BE REQUIRED TO PERFORM 10 EXPERIMENTS IN A SEMESTER.

LIST OF EXPERIMENTS

1. To find the low resistance by Carey - Foster's bridge.
2. To find the resistance of a galvanometer by Thomson’s constant deflection method using a post office box.
3. To find the value of high resistances by Substitution method.
4. To find the value of high resistances by Leakage method.
5. To study the characteristics of a solar cell and to find the fill factor.
6. To find the value of e/m for electrons by Helical method.
7. To find the ionisation potential of Argon/Mercury using a thyratron tube.
8. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
9. To study the characteristics of (Cu-Fe, Cu-Constantan) thermo couple.
10. To find the value of Planck's constant by using a photoelectric cell.
11. To find the value of co-efficient of self-inductance by using a Rayleigh bridge.
12. To find the value of Hall Co-efficient of semi-conductor.
13. To study the V-I characteristics of a p-n diode.
14. To find the band gap of intrinsic semi-conductor using four probe method.
15. To calculate the hysteresis loss by tracing a B-H curve.
16. To verify the Truth Table of various Logic Gates.

RECOMMENDED BOOKS:

1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/ her performance / achievements in different walks of life.

A Faculty Counselor will be attached to a group of students which will remain associated with him / her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him / her and will help them in terms of career guidance, personal difficulties.

A. **The student will present a written report before the committee with following in view:**

The student will present before the committee his/ her achievements during the current academic session in the form of a written report highlighting followings:

<table>
<thead>
<tr>
<th>Marks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Academic Performance</td>
</tr>
<tr>
<td>II.</td>
<td>Extra Curricular Activities / Community Service, Hostel Activities</td>
</tr>
<tr>
<td>III</td>
<td>Technical Activities / Industrial, Educational tour</td>
</tr>
<tr>
<td>IV</td>
<td>Sports/games</td>
</tr>
<tr>
<td>V</td>
<td>Moral values & Ethics</td>
</tr>
</tbody>
</table>

NOTE: Report submitted by the students should be typed on both sides of the paper.

B. A student will support his/ her achievement and verbal & communicative skill through presentation before the committee.

20 Marks

C. **Moral values & Ethics**

Syllabus - Introduction to Value Education. Understanding ethics, value system, happiness, prosperity

A minor test / Quiz will be conducted and it will be the duty of the concerned teacher assigned to teach Moral values & Ethics to submit the awards to respective chairman of the department / Director/Principal.

The evaluation of this course will be made by the following Committee.

University Departments:

1. Chairperson of the Department

Chairman
2. Senior Most Faculty Counselor Member
3. Vice-Chancellor’s Nominee Member

Affiliated Colleges:
1. Director/Principal Chairman
2. Head of the Department/Sr. Faculty Member
3. External Examiner to be appointed by the University Member

Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>Theory Practic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MGT 201B</td>
<td>ENGINEERING ECONOMICS (Common for all branches)</td>
<td>4 - -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GES 201 B</td>
<td>ENVIRONMENTAL STUDIES (Common for all branches)</td>
<td>3 - -</td>
<td>75</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AE 201B</td>
<td>BASICS OF AUTOMOBILE ENGINEERING</td>
<td>4 - -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AE 203B</td>
<td>ENGINEERING THERMODYNAMICS</td>
<td>3 1 -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AE 205B</td>
<td>MECHANICS OF SOLIDS</td>
<td>3 1 -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME 205B</td>
<td>ENGINEERING MECHANICS (Common with ME & AER)</td>
<td>3 1 -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AE 207B</td>
<td>FLUID MECHANICS & MACHINARY</td>
<td>3 1 -</td>
<td>25</td>
<td>75 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>AE 209B</td>
<td>AUTOMOBILE ENGINEERING DRAWING LAB</td>
<td>1 - 4</td>
<td>40</td>
<td>60 -</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>AE 211B</td>
<td>MECHANICS OF SOLIDS LAB</td>
<td>- - 2</td>
<td>20</td>
<td>30 50</td>
<td>80</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>AE 213B</td>
<td>COMPUTER AIDED DRAFTING LAB</td>
<td>- - 2</td>
<td>20</td>
<td>30 50</td>
<td>80</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>AE 215B</td>
<td>FLUID MECHANICS & MACHINARY LAB</td>
<td>- - 2</td>
<td>20</td>
<td>30 50</td>
<td>80</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AE 217B</td>
<td>AUTOMOBILE WORKSHOP</td>
<td>- - 2</td>
<td>50</td>
<td>- -</td>
<td>50</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>GES 203B</td>
<td>ENVIRONMENTAL STUDIES FIELD WORK (Common for all branches)</td>
<td>- - -</td>
<td>-</td>
<td>25° 25°</td>
<td>50</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>21 4 12</td>
<td>300</td>
<td>510 90</td>
<td>900</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 4 12</td>
<td>275</td>
<td>435 90</td>
<td>800</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Note:
6. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.
7. *The Environmental studies (GES-201 B & Environment Studies Field work (GES-203B) are compulsory & qualifying courses.
8. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
9. Electronics gadgets including Cellular phones are not allowed in the examination.
10. All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
COURSE OBJECTIVE: The aims of this course are to:

1. Acquaint the student with the basic economic concepts and their operational significance
2. Stimulate him to think systematically and objectively about contemporary economic problems.

UNIT I

UNIT II

Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve. Elasticity of demand, measurement of elasticity of demand, factors effecting elasticity of demand, practical importance & application of the concept of elasticity of demand. Various concepts of cost-Fixed cost, variable cost, average cost, marginal cost, money cost, real cost, opportunity cost. Shape of average cost, marginal cost, total cost etc. in short run and long run.

UNIT III

Meaning of production and factors of production; Law of variable proportions, Law of Return to Scale. Internet and External economics and diseconomies of scale. Meaning of Market, Type of Marker– perfect Competition, Monopoly, Oligopoly, Monopolistic competition (Main features of these markers).

UNIT IV

TEXT BOOKS:

1. Ahuja H.L.”Micro Economic Theory” S. Chand Publication, New Delhi
2. Dewett K.K “Modern Economic Theory” S. Chand Publication, New Delhi

SUGGESTED BOOKS:

2. Chopra P.N “Principle of Economics” Kalyani Publishers, Delhi

NOTE:

5. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
6. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

The Multidisciplinary nature of environmental studies, Definition, scope and importance.
Need for Public awareness

UNIT II

NATURAL RESOURCES:
Renewable and non-renewable resources:
Natural resources and associated problems.

a) Forest resources: Use and over-exploitation: deforestation, case studies, Timber exploitation, mining, dams and their effects and forests tribal people.

b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.

c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

d) Food resources: World food problems, changes, caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources; case studies.

f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
 • Role of an individual in conservation of natural resources.
 • Equitable use of resources for sustainable lifestyles.

UNIT III

ECOSYSTEMS:

• Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids.

• Introduction, types, characteristic features, structure and function of the following eco-system:
 a) Forest ecosystem, Grassland ecosystem, Desert ecosystem.
 b) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

UNIT IV

BIODIVERSITY AND ITS CONSERVATIONS:

• Introduction – Definition: Genetic, species and ecosystem diversity.

• Biogeographically classification of India.

• Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.

• Biodiversity at global, National and local levels.

• India as a mega-diversity nation.

• Hot-spots of biodiversity,

• Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.

• Endangered and endemic species of India.

UNIT V

ENVIRONMENTAL POLLUTION:

Definition, causes, effects and control, measures of:
Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal Pollution, Nuclear hazards

• Solid waste management: Causes effects and control measures of urban and industrial wastes.

• Role of an individual in prevention of pollution.

• Pollution case studies.

• Disaster management: Floods, earthquake, cyclone and landslides.

UNIT VI

SOCIAL ISSUES AND THE ENVIRONMENT:

a) From unsustainable to sustainable development

b) Urban problems related to energy

c) Water conservation, rain water harvesting, watershed management
d) Resettlement and rehabilitation of people; its problems and concerns, case studies

e) Environmental ethics: Issues and possible solutions

f) Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Case studies

g) Wasteland reclamation, Consumerism and waste products

h) Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act

i) Issues involved in enforcement of environmental legislation, Public awareness

UNIT VII

Role of Information Technology in Environment and human health.
Case Studies.

REFERENCES:

7. Down to Earth, Centre for Science and Environment ®.

(M) Magazine (R) Reference (TB) Textbook

NOTE:

1. Examiner will set eight questions. Students will be required to attempt five Questions.
2. The awards of this paper shall not be counted in the award of the Degree/DMC.
UNIT I

INTRODUCTION TO AUTOMOBILES: Classification of Two Wheelers, Three Wheelers and Four Wheeled Vehicles, Application & Capacity, Study of Main Specifications, Classification, Components, Requirements of Automobile Body; Vehicle Frame, Separate Body & Frame, Unitised Body, Car Body Styles, Bus Body & Commercial Vehicle Body Types; Front Engine Rear Drive & Front Engine Front Drive Vehicles, Four Wheel Drive Vehicles, Safety considerations; Safety features of latest vehicle; Future trends in automobiles.

Clutches: Requirement of Clutches; Principle of Friction Clutch; Wet Type & Dry Types; Single Plate Clutch, Diaphragm Spring Clutch, Multi-plate Clutch, Centrifugal Clutches, Electromagnetic Clutch, Over Running Clutch; Clutch Linkages.

UNIT II

POWER TRANSMISSION: Requirements of transmission system, General Arrangement of Power Transmission system; Object of the Gear Box; Different types of Gear Boxes; Sliding Mesh, Constant Mesh, Synchro- mesh Gear Boxes; Epicyclic Gear Box, Freewheel Unit, Overdrive unit-Principle of Overdrive, Advantage of overdrive, Transaxle, Transfer cases.

Drive Lines, Universal Joint, Differential and Drive Axles: Effect of driving thrust and torque reactions; Hotchkiss Drive, Torque Tube Drive and radius Rods; Propeller Shaft, Universal Joints, Slip Joint; Constant Velocity Universal Joints; Front Wheel Drive; Principle, Function, Construction & Operation of Differential; Rear Axles, Types of load on Rear Axles, Full Floating, three quarter Floating and Semi Floating Rear Axles.

UNIT III

SUSPENSION SYSTEMS: Need of Suspension System, Types of Suspension; factors influencing ride comfort, Suspension Spring; Constructional details and characteristics of leaf springs.

Steering System: Front Wheel geometry & Wheel alignment viz. Caster, Camber, King pin Inclination, Toe-in/Toe-out; Conditions for true rolling motions of Wheels during steering; Different types of Steering Gear Boxes; Steering linkages and layout; Power steering – Rack & Pinion Power Steering Gear, Electronics steering.

UNIT IV

AUTOMOTIVE BRAKES, TYRES & WHEELS: Classification of Brakes; Principle and constructional details of Drum Brakes, Disc Brakes; Brake actuating systems; Mechanical, Hydraulic, Pneumatic Brakes; Factors affecting Brake performance, Power & Power Assisted Brakes; Tyres of Wheels; Types of Tyre & their constructional details, Wheel Balancing, Tyre Rotation; Types of Tyre wear & their causes.

TEXT BOOKS:

1. Automobile Engineering by Anil Chhidkara, Satya Prakashan, New Delhi.

REFERENCE BOOKS:

1. Automotive Mechanics by Crouse / Anglin, TMH.
4. Automotive Mechanics by Joseph Heitner, EWP.

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

AIR STANDARD CYCLES: Otto, Diesel Dual combustion and Brayton cycles, Air standard efficiency, Mean effective pressure, Reciprocating air compressors.

ONE DIMENSIONAL FLUID FLOW: Application of continuity and energy equations, Isentropic flow of ideal gases through nozzles, Simple jet propulsion system.

UNIT III

UNIT IV

HEAT TRANSFER: Conduction in parallel, radial and composite wall. Convective heat transfer with laminar and turbulent flows, Overall heat transfer co-efficient, Flow through heat exchangers, Fundamentals of radiative heat transfer.

TEXT & REFERENCE BOOKS:

1. Nag P.K. Engineering Thermodynamics, Tata McGraw Hill Co Ltd
5. M.A.Sadd Thermodynamics for Engineers, Prentice Hall of India Pvt Ltd

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

STRESS, STRAIN AND DEFORMATION OF SOLIDS: Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear – Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial load.

UNIT II

BEAMS - LOADS AND STRESSES: Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stresses in beams – Shear flow.

UNIT III

TORSION: Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of helical coil springs – stresses in helical coil springs under torsion loads

UNIT IV

ANALYSIS OF STRESSES IN TWO DIMENSIONS: Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes and stresses – Mohr’s circle for biaxial stresses – Maximum shear stress - Strain energy in bending and torsion.

TEXT BOOKS:

REFERENCES:
5. Singh D.K “Mechanics of Solids” Pearson Education

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
ME 205B ENGINEERING MECHANICS
(Common with ME & AER)
B. Tech. Semester – III (Automobile Engineering)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

REVIEW OF BASIC FORCE SYSTEMS: Dimensions and units of mechanics, idealization of mechanics, laws of mechanics, vector algebra review, moment of a force about a point and axis, the couple and couple moment, addition and subtraction of couples, moment of a couple about a line, translation of a force to a parallel position, resultant of a force system, Problems.

EQUILIBRIUM: Introduction, free body diagram, control volumes, general equations of equilibrium, two point equivalent loading, static indeterminacy, simple truss, method of joints, method of sections, Problems.

UNIT II

PROPERTIES OF SURFACES & MOMENTS AND PRODUCTS OF INERTIA: First moment of an area and the centroid, principal axes, formal definition of inertia quantities, relation between mass-inertia terms and area-inertia terms, translation of coordinate axes. Transportation properties of the inertia terms, a brief introduction to tensors, the inertia of ellipsoid and principal moments of inertia, Problems.

UNIT III

KINEMATICS OF PARTICLES AND RIGID BODIES: Velocity and acceleration in path and cylindrical coordinates, motion of a particle relative to a pair of translating axes, translation and rotation of rigid bodies, Chasles theorem, moving references, velocity and acceleration for different references, inertia and coriolis forces, Problems.

UNIT IV

PARTICLE DYNAMICS, ENERGY METHODS & MOMENTUM METHODS: Newton's law for rectangular coordinates & cylindrical coordinates, rectifier translation, central force motion, Newton's law for path variables, work energy equations, work energy equations for a systems of particles, linear and angular momentum equations for a systems of particles, Problems.

TEXT BOOK:

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

BASIC CONCEPTS AND PROPERTIES: Fluid; definition, distinction between solid and fluid; Units and dimensions; Properties of fluids; density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility; vapour pressure, capillary and surface tension; Fluid statics- concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges.

UNIT II

FLUID KINEMATICS AND FLUID DYNAMICS: Fluid Kinematics; Flow visualization; lines of flow; types of flow; velocity field and acceleration; continuity equation (one and three dimensional differential forms)- Equation of streamline; stream function; velocity potential function; circulation; flow net; fluid dynamics; equations of motion; Euler’s equation along a streamline; Bernoulli’s equation; applications ; Venturi meter; Orifice meter; Pitot tube; dimensional analysis; Buckingham’s e theorem; applications; similarity laws and models.

UNIT III

INCOMPRESSIBLE FLUID FLOW: Viscous flow; Navier - Stoke’s equation (Statement only) ; Shear stress, pressure gradient relationship; laminar flow between parallel plates; Laminar flow through circular tubes (Hagen poiseulle’s); Hydraulic and energy gradient; flow through pipes; Darcy; weisback’s equation; pipe roughness; friction factor ; Moody’s diagram; minor losses; flow through pipes in series and in parallel; power transmission; Boundary layer flows, boundary layer thickness, boundary layer separation; drag and lift coefficients.

UNIT IV

HYDRAULIC TURBINES & HYDRAULIC PUMPS: Fluid machines, definition and classification - exchange of energy - Euler’s equation for turbo machines; Construction of velocity vector diagram’s; head and specific work; components of energy transfer ; degree of reaction. Hydro turbines: definition and classifications; Pelton turbine; Francis turbine; propeller turbine; Kaplan turbine; working principles; velocity triangles; work done; specific speed; efficiencies; performance curve for turbines. Pumps: definition and classifications - Centrifugal pump: classifications, working principles, velocity triangles, specific speed, efficiency and performance curves; Reciprocating pump: classification, working principles, indicator diagram, work saved by air vessels and performance curves - cavitations in pumps - rotary pumps: working principles of gear and vane pumps

TEXT BOOKS:

REFERENCE BOOKS:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

JOINTS AND PULLEYS: Universal Joint, Slip Joint, Stepped or Cone Pulley, V-Belt Pulley.
ENGINE BEARINGS: Bush Bearing; Split Bearing; Thrust Bearing; Ball Bearing; Roller Bearing; Straight and Needle.

UNIT II

ENGINE COMPONENTS: Four Stroke Petrol Engine Piston; Two Stroke Petrol Engine Piston; Four Stroke Diesel Engine Piston; Connecting Rod; Crank Shaft of 4 Cylinder Engines; Crank Shaft of Single Cylinder Engines.

GEARS: Drawing of Gear Tooth Profile for Spur Gear, Nomenclature and Profiles Approximate and Unwin’s Method
CAM PROFILES: Different Types of Cams and Followers; Types of Motion of Follower; Uniform Velocity Motion; Simple Harmonic Motion; Uniformly Accelerated and Retarded Motion; Drawing of Cam Profiles for the Above Motions

RECOMMENDED BOOKS:
1. Engineering Drawing by RB Gupta; Satya Parkasan, New Delhi
2. Machine Drawing by PS Gill; BD Kataria and Sons, Ludhiana
3. Machine Drawing by Lakshminarayan; Jain Brothers, New Delhi

NOTE:
1. For class work, the students shall be assigned to prepare at least ten drawing sheets covering all units and each topic of the syllabus.
2. For theory examination, the examiner will set a question paper containing total six questions, two questions from each unit covering each topic of the syllabus; students are required to attempt three questions at least one from each unit. Each question will carry equal marks.
1. To study the Brinell hardness testing machine & perform the Brinell hardness test.
2. To study the Rockwell hardness testing machine & perform the Rockwell hardness test.
3. To study the Vickers hardness testing machine & perform the Vickers hardness test.
4. To study the Erichsen sheet metal testing machine & perform the Erichsen sheet metal test.
5. To study the Impact testing machine and perform the Impact tests (Izod & Charpy).
6. To study the Universal testing machine and perform the tensile test.
7. To perform compression & bending tests on UTM.
8. To perform the shear test on UTM.
9. To study the torsion testing machine and perform the torsion test.
10. To draw shear Force, Bending Moment Diagrams for a simply Supported Beam under Point and Distributed Loads.

NOTE:

1. At least ten experiments are to be performed in the semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.
The students will be required to carry out the following exercises using any one of the educational CAD softwares like Latest version of AUTOCAD, I-DEAS, CATIA, SOLID EDGE, PRO-ENGINEER etc).

LIST OF EXPERIMENTS/EXERCISES

UNIT I

1. Start a New Drawing, Name the Drawing Sheet, Set the Drawing Units, Drawing Precision, Drawing Limits, Grid, Snap and Draw the Margin and Title Block as given in Exercise Problems Sheet.
2. Redraw the 2D Figures including dimensions as given in Exercise Problems Sheet using various Fundamental of 2D commands in Draw and Modify Toolbars
3. Redraw the 2D Figures including dimensions as given in Exercise Problems Sheet using various Advance commands in Osnap, Grip, Block, Layers, Attributes, Edit Toolbars

UNIT II

4. Draw Front, Top, and Right Side Orthogonal view of each of the objects in given Exercise Problems Sheet using View Port commands
5. Draw 3D Surface Models of the Objects as given in Exercise Problems Sheet, using fundamental of 3D Drawing and Surface commands
6. Draw 3D Solid Models of the Objects as given in Exercise Problems Sheet, using fundamental of 3D Drawing and Solid commands

UNIT III

7. Draw 3D Models of different types of Joints, Pulleys and Engine Bearings as given in Exercise Problems Sheet.
8. Draw 3D Models of different types of Engine Piston, Connecting Shafts and Crank Shafts as given in Exercise Problems Sheet.

NOTE:

1. For class work, the students should be assigned to prepare at least ten drawing sheets covering all units and each topic/experiment/exercise of the syllabus.
2. For practical examination, the examiner should set a question paper containing total three questions, one question from each unit covering all units and each topic/experiment/exercise of the syllabus; students are required to attempt all the three questions.
LIST OF EXPERIMENTS

1. Determination of the Coefficient of discharge of given Orifice meter.
2. Determination of the Coefficient of discharge of given Venturi meter.
3. Calculation of the rate of flow using Rotameter.
4. Determination of friction factor of given set of pipes.
5. Conducting experiments and drawing the characteristic curves of centrifugal pump /submersible pump
6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
7. Conducting experiments and drawing the characteristic curves of Gear pump.
8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
9. Conducting experiments and drawing the characteristics curves of Francis turbine.
10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

NOTE:
1. At least ten experiments are to be performed in the semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.
LIST OF EXPERIMENTS

1. Work on Lifting Equipment.
2. Work on Wheel Care Equipment.
3. Work on Body Shop Equipment.
5. Work on Cleaning Equipment.
10. Work on Battery Tester, Brake Bleeder & Coolant Flush-N-Fill Equipment.
11. Work on Gas & Smoke Analyzer Equipment.

NOTE:

1. At least ten experiments are to be performed in the semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.
FIELD WORK:
- Visit to a local area to document environmental assets – river/ forest/ grassland/ hill/ mountain.
- Visit to a local polluted site–Urban/ Rural/ Industrial/ Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems – pond, river, hill slopes, etc. (Field work equal to 5 lectures hours).

NOTE:
The awards of this paper shall not be counted in the award of the Degree/DMC.
The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

Electronics gadgets including Cellular phones are not allowed in the examination.

Each student has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carried out in the V semester.

All the branches are to be divided into group ‘A’ and ‘B’ as per the suitability of the institute/college, so that there is an equitable distribution of teaching load in odd and even semesters.
COURSE OBJECTIVE: The aims of this course are to:
3. Acquaint the student with the basic economic concepts and their operational significance
4. Stimulate him to think systematically and objectively about contemporary economic problems.

UNIT I

UNIT II

Meaning of Demand, Individual and Market demand schedule. Law of demand, shape of demand curve. Elasticity of demand, measurement of elasticity of demand, factors effecting elasticity of demand, practical importance & application of the concept of elasticity of demand. Various concepts of cost-Fixed cost, variable cost, average cost, marginal cost, money cost, real cost, opportunity cost. Shape of average cost, marginal cost, total cost etc. in short run and long run.

UNIT III

Meaning of production and factors of production; Law of variable proportions, Law of Return to Scale, Internet and External economics and diseconomies of scale. Meaning of Market, Type of Marker– perfect Competition, Monopoly, Oligopoly, Monopolistic competition (Main features of these markers).

UNIT IV

TEXT BOOKS:

SUGGESTED BOOKS:
5. Jhingan M.L”Micro Ecomomic Theory” S.Chand Publication ,New Delhi

NOTE:
7. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
8. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I
The Multidisciplinary nature of environmental studies, Definition, scope and importance. Need for Public awareness

UNIT II
NATURAL RESOURCES:
Renewable and non-renewable resources:
Natural resources and associated problems.
g) Forest resources: Use and over-exploitation: deforestation, case studies, Timber exploitation, mining, dams and their effects and forests tribal people.
h) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
i) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
j) Food resources: World food problems, changes, caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
k) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources; case studies.
l) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

UNIT III
ECOSYSTEMS:
- Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids.
- Introduction, types, characteristic features, structure and function of the following eco-system:
 a) Forest ecosystem, Grassland ecosystem, Desert ecosystem.
 b) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

UNIT IV
BIODIVERSITY AND ITS CONSERVATIONS:
- Introduction – Definition: Genetic, species and ecosystem diversity.
- Biogeographically classification of India.
- Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.
- Biodiversity at global, National and local levels.
- India as a mega-diversity nation.
- Hot-spots of biodiversity,
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India.

UNIT V
ENVIRONMENTAL POLLUTION:
Definition, causes, effects and control, measures of:
Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal Pollution, Nuclear hazards
- Solid waste management: Causes effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution.
- Pollution case studies.
- Disaster management: Floods, earthquake, cyclone and landslides.

UNIT VI
SOCIAL ISSUES AND THE ENVIRONMENT:
- j) From unsustainable to sustainable development
- k) Urban problems related to energy
- l) Water conservation, rain water harvesting, watershed management
m) Resettlement and rehabilitation of people; its problems and concerns, case studies
n) Environmental ethics: Issues and possible solutions
o) Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Case studies
p) Wasteland reclamation, Consumerism and waste products
q) Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act
r) Issues involved in enforcement of environmental legislation, Public awareness

UNIT VII

Role of Information Technology in Environment and human health.
Case Studies.

REFERENCES:
7. Down to Earth, Centre for Science and Environment ®.

(M) Magazine (R) Reference (TB) Textbook

NOTE:

1. Examiner will set eight questions. Students will be required to attempt five Questions.
2. The awards of this paper shall not be counted in the award of the Degree/DMC.
UNIT I

Friction in screw and nut, Pivot and collar, Thrust bearing, Plate and disc clutches, Flat, V Belt and rope drives, Ratio of tensions, Effect of centrifugal and initial tension, Condition for maximum power transmission, Open and crossed belt drive.

UNIT II

GEARING AND CAMS: Gear profile and geometry – Nomenclature of spur and helical gears – Gear trains: Simple, compound gear trains and epicyclic gear trains - Determination of speed and torque- Cam – Types of cams – Design of profiles – Knife edged, flat faced and roller ended followers with and without offsets for various types of follower motions.

UNIT III

BALANCING: Static and dynamic balancing – Single and several masses in different planes –Balancing of reciprocating masses- primary balancing and concepts of secondary balancing – Single and multi cylinder engines (Inline) – Balancing of radial V engine – direct and reverse crank method.

UNIT IV

TEXT BOOKS:

REFERENCES:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
ENGINE CONSTRUCTION AND OPERATION: Constructional details of four stroke petrol engine, working principle, air standard Otto cycle, actual indicator diagram, two stroke engine construction and operation, comparison of four stroke and two stroke engine operation, firing order and its significance; Port Timing, Valve Timing of petrol engines.

UNIT II

SI ENGINE FUEL SYSTEM: Carburetor working principle, requirements of an automotive carburetor, starting, idling, acceleration and normal circuits of carburetors. Compensation, maximum power devices, constant choke and constant vacuum carburetors, fuel feed systems; mechanical and electrical fuel feed pumps; Petrol injection, MPFI.

UNIT III

IGNITION, COOLING AND LUBRICATION SYSTEM: Types and working of battery coil and magneto ignition systems, relative merits and demerits, centrifugal and vacuum advance mechanisms; Types and construction of spark plugs, electronic ignition systems. Need for cooling system, Types of cooling system: air cooling system, liquid cooling system, forced circulation system, pressure cooling system; Lubrication system; mist, wet sump lubrication system, properties of lubricants.

UNIT IV

COMBUSTION AND COMBUSTION CHAMBERS: Combustion in SI engine; stages of combustion, flame propagation, rate of pressure rise, abnormal combustion, detonation, effect of engine variables on knock, knock rating; Combustion chambers; different types, factors controlling combustion chamber design.

TEXT BOOKS:

REFERENCES:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

BASIC THEORY: Diesel engine construction and operation, two stroke and four stroke diesel dual cycle; engines, diesel cycle, fuel-air and actual cycle analysis, diesel fuel, ignition quality, cetane number, laboratory tests for diesel fuels, standards and specifications.

UNIT II

FUEL INJECTION SYSTEM: Requirements, air and solid injection, functions of components, jerk and distributor type pumps common rail system, PTFI system pressure waves, injection lag, unit injector, mechanical and pneumatic governors, fuel injector, types of injection nozzle, nozzle tests, spray characteristics, injection timing, pump calibration.

UNIT III

AIR MOTION, COMBUSTION AND COMBUSTION CHAMBERS: Importance of air motion, swirl, squish and turbulence, swirl ratio, fuel air mixing, stages of combustion, delay period, factors affecting delay period, knock in CI engines. Combustion chamber; design requirements, direct and indirect injection combustion chambers, M type combustion chamber.

UNIT IV

SUPERCHARGING AND TURBOCHARGING: Necessity and limitations, types of supercharging and turbo charging, relative merits, matching of turbocharger, exhaust gas recirculation, charge cooling.

DIESEL ENGINE TESTING AND PERFORMANCE: automotive and stationary diesel engine testing and related emission standards; Engine performance and emission characteristics, variables affecting engine performance and emission, methods to improve engine performance, heat balance, performance maps.

TEXT BOOKS:

REFERENCES:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION TO COMBUSTION PROCESSES: Combustion in premixed and diffusion flames, Combustion process in IC engines.

UNIT II

NORMAL, ABNORMAL COMBUSTION IN SI ENGINES: Stages of combustion, Flame propagation, Rate of pressure rise, Cycle to cycle variation, Abnormal combustion, Theories of detonation, Effect of engine operating variables on combustion.

UNIT III

COMBUSTION AND KNOCK IN CI ENGINES: Droplet and spray combustion theory, stages of combustion, delay period, peak pressure, Heat release, Gas temperature, Diesel knock.

UNIT IV

HEAT TRANSFER IN IC ENGINES: Basic definitions, Conduction heat transfer, Convective heat transfer, Radiation heat transfer, Heat transfer, temperature distribution and thermal stresses in piston - Cylinder liner - Cylinder head - fins and values.

EXPERIMENTAL INVESTIGATION OF COMBUSTION AND HEAT TRANSFER IN IC ENGINES: Photographic studies of combustion processes, P-θ diagram in SI and CI engines, Anemometry, Temperature measurement in piston, cylinder liner, cylinder head and engine valves.

TEXT BOOKS:

REFERENCES:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

CRYSTAL STRUCTURE, CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS: Crystal structure – BCC, FCC and HCP structure – unit cell – crystallographic planes and directions, Miller indices – crystal imperfections, point, line, planar and volume defects – Grain size, ASTM grain size number; Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphism, eutectic, peritectic, eutectoid and peritectroid reactions, Iron – iron carbide equilibrium diagram; Classification of steel and cast iron microstructure, properties and application.

UNIT II

UNIT III

SELECTION OF MATERIALS: Criteria of selecting materials for automotive components viz cylinder block, Cylinder head, piston, piston ring, Gudgeon pin, connecting rod, crank shaft, crank case, cam, cam shaft, engine valve, gear wheel, clutch plate, axle, bearings, chassis, spring, body panel, radiator, brake lining etc.

UNIT IV

TEXT BOOKS:

REFERENCES:

1. William D. Callister “Material Science and Engineering”, John Wiley and Sons
2. Raghavan V. Materials Science and Engineering, Prentice Hall of India Pvt. Ltd

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two questions from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
LIST OF EXPERIMENTS

1. To study various types of Kinematic links, pairs, chains and Mechanisms.
2. To study inversions of 4 Bar Mechanisms, Single and Double slider crank mechanisms.
3. To plot slider displacement, velocity and acceleration against crank rotation for Single slider crank mechanism.
5. To study the different type of the belt drives.
6. To study various type of cam and follower arrangements.
7. To plot follower displacement v/s cam rotation for various Cam Follower systems.
8. To study various types of gears – Spur, Helical, Double helical, Spiral, Bevel gear, Hypoid
9. To study various types of gear trains – Simple, Compound and Epicyclic
10. To find co-efficient of friction between belt and pulley.
11. To study the working of Screw Jack and determine its efficiency.
12. Draw the involute and cycloidal teeth profile.
13. To perform the experiment for static balancing on Static Balancing Machine
14. To perform the experiment for dynamic balancing on Dynamic Balancing machine
15. Determine the turning moment on crank shaft neglecting weight of the connecting rod in the reciprocating parts of an engine
16. To determine experimentally the unbalance forces and couples of reciprocating parts

NOTE:

1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
LIST OF EXPERIMENTS

1. Dismantling of 4 cylinder petrol engine.
3. Dismantling of 6 cylinder diesel engine.
5. Study of oil filter, fuel filter, fuel injection system, carburetor, MPFI
6. Study of ignition system components – coil, magneto and electronic ignition systems.
7. Study of engine cooling system components
8. Study of engine lubrication system components
9. Ovality and taper measurement of cylinder bore and comparison with standard specifications
10. Ovality and taper measurement of engine crank shaft and comparison with standard specification

NOTE:

1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
LIST OF EXPERIMENTS

1. Experiments on Thermal conductivity of solids, liquids and liquids
2. Experiments on Natural convection and forced convection
3. Experiments on Boiling heat transfer and cooling tower
4. Experiments on emissivity and absorptivity
5. Experiments on Heat exchangers
6. Experiments on LMTD methods
7. Experiments on mass transfer
8. Experiments on temperature distribution, thermal stresses and Heat transfer in piston, Cylinder liner, Cylinder head, fins and values.
9. Experimental investigation of combustion and heat transfer in IC engines
10. Experimental Photographic studies of combustion processes, P-\(\theta\) diagram in SI and CI engines
11. Experimental Anemometry

NOTE:

1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
LIST OF EXPERIMENTS

1. To study crystal structures with the help of ball model.
2. To study crystal structures and crystals imperfections using ball models.
3. To study microstructures of metals/ alloys through microscopic observation.
4. To study hardening (by quenching) of steel specimen by Jominy Test.
5. To observe effect of tempering temperature on the property of given steel specimen.
6. To study microstructure of heat-treated steel through microscopic observation.
7. To study thermo-setting of plastics.
8. To study the creep behavior of a given specimen.
9. To study the mechanism of chemical corrosion and its protection.
10. To study the properties of various types of plastics.
11. To study Bravais lattices with the help of models.

NOTE:

1. At least ten experiments are to be performed in the semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.
GES 203B ENVIRONMENTAL STUDIES FIELD WORK

B. Tech, Semester –III/IV (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
<th>Field Work</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25Marks</td>
<td>25 Marks</td>
</tr>
</tbody>
</table>

FIELD WORK:

- Visit to a local area to document environmental assets – river/ forest/ grassland/ hill/ mountain.
- Visit to a local polluted site-Urban/ Rural/ Industrial/ Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems – pond, river, hill slopes, etc. (Field work equal to 5 lectures hours).

Note: The awards of this paper shall not be counted in the award of the Degree/DMC.
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/her performance/achievements in different walks of life.

A Faculty Counselor will be attached to a group of students which will remain associated with him/her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him/her and will help them in terms of career guidance, personal difficulties.

A. The student will present a written report before the committee with following in view:

 The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

 I. Academic Performance

 II. Extra Curricular Activities/Community Service, Hostel Activities

 III. Technical Activities/Industrial, Educational tour

 IV. Sports/games

 V. Moral values & Ethics

 NOTE: Report submitted by the students should be typed on both sides of the paper.

C. A student will support his/her achievement and verbal & communicative skill through presentation before the committee.

 (30 Marks)

C. Syllabus - Process for Value Education, self-evaluation concept and process.
 A minor test will be conducted during the semester and it will be the duty of the concerned teacher assigned to teach Moral values & Ethics to submit the awards to respective chairman of the department/Director/Principal.

 The evaluation of this course will be made by the following Committee.

 University Departments:
 1 Chairperson of the Department
 2 Senior Most Faculty Counselor
 3 Vice-Chancellor’s Nominee

 Affiliated Colleges:
 1 Director/Principal
 2 Head of the Department/Sr. Faculty
 3 External Examiner to be appointed by the University

 Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 3rd YEAR (SEMESTER – VI) AUTOMOBILE ENGINEERING

Credit Based Scheme w.e.f. 2014-15

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AE 302B</td>
<td>AUTOMOTIVE FUELS & LUBRICANTS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AE 304B</td>
<td>AUTOMOTIVE TRANSMISSION</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AE 306B</td>
<td>AUTOMOTIVE INSTRUMENTATION & EMBEDDED SYSTEMS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AE 308B</td>
<td>AUTOMOTIVE CHASSIS DESIGN</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AE 310B</td>
<td>AUTOMOTIVE POLLUTION & CONTROL</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AE 312B</td>
<td>TWO & THREE WHEELERS</td>
<td>3 1</td>
<td>25 75</td>
<td>-</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>HUM 302B</td>
<td>REPORT WRITING SKILLS (Common for all branches)</td>
<td>1 -</td>
<td>25 75</td>
<td>-</td>
<td>75</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>AE 314B</td>
<td>TWO & THREE WHEELERS LAB</td>
<td>- -</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>AE 316B</td>
<td>COMPUTER AIDED CHASSIS DESIGN LAB</td>
<td>- -</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>AE 318B</td>
<td>COMPUTER AIDED ENGINE DESIGN LAB</td>
<td>- -</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AE 320B</td>
<td>AUTOMOTIVE ENGINE TESTING & POLLUTION MEASUREMENT LAB</td>
<td>- -</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>HUM 304B</td>
<td>ORAL PRESENTATION SKILLS (Common for all branches)</td>
<td>- -</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GP 302B</td>
<td>GENERAL PROFICIENCY & ETHICS</td>
<td>1 -</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>19 6</td>
<td>10 275</td>
<td>500</td>
<td>225</td>
<td>1000</td>
<td>32</td>
</tr>
</tbody>
</table>

Note:

5. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.

6. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

7. Electronics gadgets including Cellular phones are not allowed in the examination.

8. Each student has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carried out in the VII semester.
UNIT I

FUELS: Introduction, Structure of petroleum, Refining process, Product of refining process, Fuels for spark-ignition engines, Knock rating of SI engine Fuels, Octane number requirement, Diesel fuels, LPG as SI engine fuel, Non petroleum fuels, Additives.

UNIT II

ALTERNATIVE FUELS FOR IC ENGINES: Introduction, Manufacture of methanol, Manufacture of ethanol, Comparison of properties of alcohols and gasoline as engine fuels, Engine performance with pure alcohols, Alcohol-gasoline fuel blends, Alcohols as diesel fuels, Vegetable oils as diesel fuels, Bio-gas as diesel fuel.

UNIT III

UNIT IV

TECHNIQUES AND PROCEDURE: To find Temperature dependence of viscosity of lubrication oil by Redwood viscometer, Viscosity index of lubricating oil by Say bolt viscometer, Flash and fire points of fuels, Flash and fire points of lubricants, ASTM distillation test of gasoline, Drop point of grease and Mechanical penetration in grease, Aniline distillation test of gasoline, Reid vapour pressure test, Study of Bomb Calorimeter, Study of Gas Calorimeter.

TEXT BOOKS:

REFERENCES:
3. Obert.E.F.- “Internal Combustion Engines”

NOTE:
9. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
10. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

CLUTCH AND GEAR BOX: Clutch- Different types of clutches, working principles and constructions, torque capacity and design aspects; Gear Box- method of calculation of gear ratios for vehicles, performance characteristics in different speeds, different types of gear boxes, speed synchronizing devices, gear materials, lubrication.

UNIT II

HYDRODYNAMIC DRIVE: All spur and internal gear type planetary gearboxes, Ford T-model, Cotal and Wilson Gear box, determination of gear ratios, automatic overdrives.

AUTOMOTIVE TRANSMISSION: Fluid coupling- advantages and limitations, construction details, torque capacity, slip in fluid coupling, performance characteristics; Means used to reduce drag torque in fluid coupling; Principal of torque conversion, single, multi stage and polyphase torque converters, performance characteristics, constructional and operational details of typical hydraulic transmission drives.

UNIT III

HYDROSTATIC DRIVE AND ELECTRIC DRIVE: Automatic transmission relative merits and demerits when compared to conventional transmission, automatic control of gears, study of typical automatic transmissions, Ford and Chevrolet drive, and automatic control of gear box.

UNIT IV

AUTOMATIC TRANSMISSION APPLICATIONS: Hydrostatic drives- advantages and disadvantages, principles of hydrostatic drive systems, construction and working of typical hydrostatic drives, Janney Hydrostatic drive; Electrical drives- advantages and limitations, principles of Ward Leonard system of control Modern electric drive for buses and performance characteristics.

TEXT BOOKS:

1. Heldt P.M - Torque converters- Chilton Book Co
2. Newton and Steeds - Motor Vehicle- Illiffee Publisher

REFERENCE:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

MEASUREMENT CHARACTERISTICS: Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments.

AUTOMOTIVE INSTRUMENTATION: Modern automotive instrumentation – computerized instrumentation system, multiplexing, sampling and advantages – Measurements – fuel quality, coolant temperature, oil pressure vehicles speed, Display devices – LED, LCD, VFD, CRT and types, CAN network, the glass cockpit and information system. Onboard diagnostics – fault code displays. Off board diagnostics – engine data display, expert system occupant protection system – Airbag deployment system security and warning systems.

UNIT II

MEASUREMENT ANALYSIS: Chemical, thermal, magnetic and optical gas analyzers, measurement of smoke, dust and moisture, gas chromatography, spectrometry, measurement of pH, Review of basic measurement techniques.

UNIT III

INTRODUCTION TO EMBEDDED SYSTEM: Introduction to functional building blocks of embedded systems – Register, memory devices, Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments.

UNIT IV

REAL TIME OPERATING SYSTEM (RTOS) Introduction to basic concepts of RTOS, Basics of real time & embedded system operating systems. RTOS – Interrupt handling, task scheduling; embedded system design issues in system development process – Action plan, use of target system, emulator, use of software tools.

TEXT BOOKS:

REFERENCES:

1. Bechhold- Understanding Automotive Electronics- SAE.

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

CLUTCH DESIGN CALCULATION: Design of single plate clutch, multi plate clutch, design of centrifugal clutch, cone clutch, energy dissipated, torque capacity of clutch, design of clutch components, design details of roller and sprang type of clutches

UNIT II

GEAR BOX: Performance of vehicle, total resistance to motion, traction and tractive effort, acceleration; calculation of gear ratio, design of three speed gear box, and design of four speed gear boxes.

UNIT III

VEHICLE FRAME AND SUSPENSION: Study of loads, moments and stresses on frame members, design of frame for Passenger and Commercial vehicles, design of leaf springs, coil springs and torsion bar springs.

UNIT IV

FRONT AXLE AND STEERING SYSTEMS: Analysis of loads, moments and stresses at different sections of front axle, determination of loads at kingpin bearings, wheel spindle bearings, choice of bearings, determination of optimum dimensions and proportions for steering linkages ensuring minimum error in steering.

FINAL DRIVE AND REAR AXLE: Design of propeller shaft, design details of final drive gearing, design details of full floating, Semi-floating and three quarter floating rear shafts and rear axle housings.

TEXT BOOKS:

1. Giri.N.K. - “Automobile Mechanics” - Khanna Publisher, New Delhi

REFERENCES:

5. Dean Averns - “Automobile Chassis Design”- Illiffe Books Ltd

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION: Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution.

POLLUTANT FORMATION IN SI ENGINES: Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution.

UNIT II

POLLUTANT FORMATION IN CI ENGINES: Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions, Nox formation and control. Noise pollution from automobiles, measurement and standards.

UNIT III

CONTROL OF EMISSIONS FROM SI AND CI ENGINES: Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fuel cells, two stroke engine pollution controls.

UNIT IV

MEASUREMENT TECHNIQUES EMISSION STANDARDS AND TEST PROCEDURE: NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles – USA, Japan, Euro and India. Test procedures – ECE, FTP Tests. SHED Test – chassis dynamometers, dilution tunnels.

TEXT BOOKS:

REFERENCES:

2. Obert E.F. - “Internal Combustion Engines”

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

POWER UNIT: Two stroke SI engine, four stroke SI engine; merits and demerits, Symmetrical and unsymmetrical port timing diagrams, Types of scavenging processes, merits and demerits, scavenging pumps, Rotary valve engine; Fuel system, Lubrication system. Magneto coil and battery coil spark ignition system, electronic ignition system; Starting system, Kick starter system.

UNIT II

CHASSIS AND SUB-SYSTEMS: Mainframe and its types. Chassis and shaft drive, Single, multiple plates and centrifugal clutches. Gear box and gear controls. Front and rear suspension systems; Shock absorbers; Panel meters and controls on handle bar.

UNIT III

BRAKES, WHEELS AND TYRES: Drum brakes, disc brakes, front and rear brake links, layouts, Spoked wheel, cast wheel, disc Wheel, disc types; Tyres and tubes.

UNIT IV

TWO WHEELERS: Case study of major Indian models of motorcycles, scooters and mopeds, TVS mopeds and motorcycles, Hero Honda motorcycles, Bajaj scooters and motorcycles, Yamaha, Enfield motorcycles; Servicing and maintenance.
THREE WHEELERS: Case study of Indian models, Auto rickshaws, pickup van, delivery van and trailer, Maintenance: daily, weekly, monthly, Fault tracing.

TEXT BOOK:

REFERENCES:

2. Encyclopedia of Motorcycling - 20 volume Marshall, Cavensih, UK

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
OBJECTIVE
The course aims at developing competence for report writing with a focus on its complex writing techniques and procedures.

COURSE CONTENT

UNIT I
Report Writing
Reports: meaning, their importance and types, Structure of reports, Formats of reports, Use of illustrations

UNIT II
Writing of Business and Technical Reports:
Preliminary steps and procedure of writing report, writing various types of reports on technical, business related topics

RECOMMENDED READING

SCHEME OF END SEMESTER EXAMINATION (MAJOR TEST) AND INSTRUCTIONS FOR THE EXAMINER

1. The duration of the exam will be 2 hours.
2. The Question Paper for this theory course shall have three questions in all covering both the units. All will be compulsory with internal choice.
3. Question no. 1 will be of 10 marks. The question may have two/three parts with enough internal choice, covering various components of both the Units.
4. Question no 2 with internal choice will be of 10 marks covering contents of the Unit I. It will be theoretical in nature.
5. Question no 3 will have two parts of 15 marks each. The student will be asked to write reports on business and technical subject/ issue covering contents of Unit II. The emphasis would be on testing the actual report writing on a given business and technical situation/ subject in letter format.
LIST OF EXPERIMENTS

1. Road performance test of a two wheeler using chassis dynamometer.
2. Performance test of a shock absorber.
3. Performance test on coil spring.
4. Two wheeler chain tension test.
5. Brake and Clutch adjustment as per specification.
6. Dismantling and assembling of two wheeler gear box and finding gear ratio.
7. Dismantling and assembling of three wheeler gear box and finding gear ratios.
8. Three wheeler brake and clutch play adjustment
9. Dismantling and assembling of three wheeler steering system.
10. Study of three wheeler chassis frame and power transmission system.

NOTE:

1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
The students will be required to carry out the following exercises using any one of the educational CAD softwares like Latest version of AutoCAD, I-DEAS, CATIA, SOLID EDGE, PRO-ENGINEER etc.

LIST OF EXPERIMENTS/EXERCISES

UNIT I

1. Design and Drawing of clutches as given in Exercise Problems Sheet.
2. Design and Drawing of gear boxes as given in Exercise Problems Sheet.

UNIT II

3. Design and Drawing of vehicle frames as given in Exercise Problems Sheet.
4. Design and Drawing of suspension systems as given in Exercise Problems Sheet.
5. Design and Drawing of front axles as given in Exercise Problems Sheet.

UNIT III

6. Design and Drawing of steering systems as given in Exercise Problems Sheet.
7. Design and Drawing of final drives as given in Exercise Problems Sheet.
8. Design and Drawing of rear axles as given in Exercise Problems Sheet.

NOTE:

1. For class work, the students should be assigned to prepare at least ten drawing sheets covering all units and each topic/experiment/exercise of the syllabus.
2. For practical examination, the examiner should set a question paper containing total three questions, one question from each unit covering all units and each topic/experiment/exercise of the syllabus; students are required to attempt all the three questions.
The students will be required to carry out the following exercises using any one of the educational CAD softwares like Latest version of AutoCAD, I-DEAS, CATIA, SOLID EDGE, PRO-ENGINEER etc

LIST OF EXPERIMENTS/EXERCISES

UNIT I
1. Design and Drawing of Cylinders as given in Exercise Problems Sheet.
2. Design and Drawing of Pistons as given in Exercise Problems Sheet.

UNIT II
3. Design and Drawing of Piston pins and Piston rings as given in Exercise Problems Sheet.
4. Design and Drawing of Connecting Rod Assembly as given in Exercise Problems Sheet.

UNIT III
5. Design and Drawing of Crankshafts, as given in Exercise Problems Sheet.
6. Design and Drawing of Flywheels as given in Exercise Problems Sheet.
7. Design and Drawing of Inlet and Exhaust Valves as given in Exercise Problems Sheet.
8. Design and Drawing of Cam and Camshafts as given in Exercise Problems Sheet.

NOTE:
1. For class work, the students should be assigned to prepare at least ten drawing sheets covering all units and each topic/experiment/exercise of the syllabus.
2. For practical examination, the examiner should set a question paper containing total three questions, one questions from each unit covering all units and each topic/experiment/exercise of the syllabus; students are required to attempt all the three questions.
LIST OF EXPERIMENTS:

FOR ENGINE TESTING
1. Study of hydraulic, electrical and eddy current dynamometers
2. Valve timing and port timing diagram
3. Performance test on two wheeler SI engine
4. Performance test on automotive multi-cylinder SI engine
5. Performance test on automotive multi-cylinder CI engine
6. Performance test on variable compression ratio engine
7. Retardation test on I.C. Engines.
8. Heat balance test on automotive multi-cylinder SI engine
9. Heat balance test on automotive multi-cylinder CI engine
10. Morse test on multi-cylinder SI engine
11. Study of P-V and P-P diagrams for IC engine with piezo-electric pick up, charge amplifier, angle encoder.

FOR POLLUTION MEASUREMENT
1. Pollutant formation in SI engines
2. Pollutant formation in CI engines
3. Control of emissions from SI and CI engines
4. Measurement techniques NDIR, FID, Chemiluminescent Analyzers, Gas Chromatograph, Smoke Meters
5. Emission standards driving cycles USA, Japan, Euro and India
6. Test procedures – ECE, FTP test; SHED test – Chassis Dynamometers, Dilution Tunnels.

NOTE:
1. Ten experiments five from each section are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
OBJECTIVE
To enable students to develop their speaking skills with professional proficiency

COURSE CONTENT
Oral Presentations:
Group Discussion; Mock interviews

Note for the Teacher:
The teacher concerned, by devising her/his method, must preview and review the student’s spoken proficiency at the beginning and end of the semester respectively to find the efficacy of the course and degree of improvement in the student.

RECOMMENDED READING

SCHEME OF END SEMESTER EXAMINATION (Practical)
An external Practical exam of 30 marks of 2 hour duration for the course will be conducted by an external examiner appointed by the competent authority of the University’s.

NOTE: Students will be tested for their oral communication competence making them participate in Group discussion, mock situations for interview. Students may also be evaluated through a viva conducted by an external examiner.
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/her performance/achievements in different walks of life.

A Faculty Counselor will be attached to a group of students which will remain associated with him/her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him/her and will help them in terms of career guidance, personal difficulties.

B. The student will present a written report before the committee with following in view:

- The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

 I. **Academic Performance**

 II. **Extra Curricular Activities / Community Service, Hostel Activities** (8 Marks)

 III. **Technical Activities / Industrial, Educational tour** (8 Marks)

 IV. **Sports/games** (14 Marks)

 V. **Moral values & Ethics** (15 Marks)

 NOTE: Report submitted by the students should be typed on both sides of the paper.

D. A student will support his/her achievement and verbal & communicative skill through presentation before the committee. (30 Marks)

C. **Moral values & Ethics**

Syllabus - A few topics from the below mentioned books

A minor test/Quiz will be conducted during the semester and it will be the duty of the concerned teacher assigned to teach Moral values & Ethics to submit the awards to respective chairman of the department / Director/Principal.

The evaluation of this course will be made by the following Committee.

University Departments:

1. Chairperson of the Department
2. Senior Most Faculty Counselor
3. Vice- Chancellor’s Nominee

Affiliated Colleges:

1. Director/Principal
2. Head of the Department/Sr. Faculty
3. External Examiner to be appointed by the University

Remuneration:

Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)
SCHEME OF STUDIES & EXAMINATIONS
B.Tech. Final YEAR (SEMESTER – VII) AUTOMOBILE ENGINEERING
Credit Based Scheme w.e.f. 2015-16

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Classwork</th>
<th>Examination</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>Theory</td>
<td>Practic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AE 401B</td>
<td>AUTOMOTIVE SAFETY</td>
<td>4 - -</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AE 403B</td>
<td>VEHICLE PERFORMANCES AND TESTING</td>
<td>4 - -</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>AE 405B</td>
<td>VEHICLE DYNAMICS</td>
<td>3 1 -</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>AE 407B</td>
<td>VEHICLE MAINTANANCE</td>
<td>4 - -</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>* OPEN ELECTIVE</td>
<td></td>
<td>4 - -</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>AE 409B</td>
<td>AUTO SCANING & VEHICLE TESTING LAB</td>
<td>- - 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>AE 411B</td>
<td>VEHICLE MAINTANANCE & RECONDITIONING LAB</td>
<td>- - 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>AE 413B</td>
<td>PROJECT</td>
<td>- - 4</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>AE 415B</td>
<td>PROFESSIONAL TRAINING-II</td>
<td>- - 2</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19 1 10</td>
<td>315</td>
<td>375</td>
<td>60</td>
<td>750</td>
<td>28</td>
</tr>
</tbody>
</table>

* List of Open Electives

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEI 623B</td>
<td>ENTREPRENEURSHIP</td>
</tr>
<tr>
<td>2</td>
<td>BME 451B</td>
<td>MEDICAL INSTRUMENTATION</td>
</tr>
<tr>
<td>3</td>
<td>ECE 305B</td>
<td>CONSUMER ELECTRONICS</td>
</tr>
<tr>
<td>4</td>
<td>EE 451B</td>
<td>ENERGY AUDIT</td>
</tr>
<tr>
<td>5</td>
<td>EEE 457B</td>
<td>ENERGY RESOURCES & TECHNOLOGY</td>
</tr>
</tbody>
</table>

Note:

7 Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Proficiency & Ethics Syllabus.

8 Students will be permitted to opt for any one elective run by the other department. However, the department shall offer those elective for which they have expertise. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. The minimum strength of the students should be twenty to run an elective course.

9 Assessment of Professional Training-II, undergone at the end of VI semester, will be based on seminar, viva-voce, report and certificate of Professional Training obtained by the student from the industry, institute, research lab, training center etc.

10 The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

11 Electronics gadgets including Cellular phones are not allowed in the examination.

12 The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher). Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her. The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
B. Tech. Semester –VII (Automobile Engineering)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

INTRODUCTION: Design of the body for safety, energy equation, engine location, deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle, concept of crumple zone, safety sandwich construction.

SAFETY CONCEPTS: Active safety, driving safety, conditional safety, perceptibility safety, operating safety- passive safety: exterior safety, interior safety, deformation behaviour of vehicle body, and speed and acceleration characteristics of passenger compartment on impact.

UNIT II

SAFETY EQUIPMENTS: Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety.

UNIT III

COLLISION WARNING AND AVOIDANCE: Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

UNIT IV

COMFORT AND CONVENIENCE SYSTEM: Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system

TEXT BOOK:

REFERENCES:

NOTE:

11. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.

12. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT 1

VEHICLE PERFORMANCE PARAMETERS: Vehicle Performance parameters, Fuel economy, acceleration, deceleration, grad ability, top speed, handling, comfort, life durability, EGR systems, and Vehicular systems: Suspension steering, Brakes & carriage unit testing, test procedure, Catalytic converters function & construction, Lambda close loop control system for gasoline vehicles.

UNIT II

VEHICLE TESTING: Vehicle Testing - Road test, Free acceleration test, Coast down test, Passer by noise test, Wheel alignment and balancing test, Test tracks & proving ground testing, high speed track, pavement track, corrugated track, mud track, steering pad, gradient track, deep wading through shallow water, Laboratory testing & testing on chassis dynamometer transition testing- Euro III onwards, accelerated testing, Virtual testing, Evaporative emission testing, Oil consumption testing

UNIT III

SAFETY SYSTEMS AND AUXILIARIES: Safety: Motor vehicle safety standards, active safety, passive safety, bio-mechanics Structural safety, energy absorption, ergonomic consideration in safety, Occupants safety systems like seat belts, head restrain, air bags, GPS, roll-over protection system, Electronic stability program. Particulate traps Function & construction.

UNIT IV

COLLISIONS AND CRASH TESTING: Crash testing: Human testing, Dummies, crashworthiness, pole crash testing, rear crash testing, vehicle to vehicle impact, side impact testing, crash test sensors, sensor mounting, crash test data acquisition. Braking distance test

NOISE VIBRATION AND EMI: Noise & vibration: Mechanism of noise generation, engine noise & vibration, causes and remedies, road shocks wind noise & measurement, vehicle measurement testing. Automobile testing instrumentation: Sensors types and selection, Instrumentation for functional tests, Battery testing, endurance test, model test and full scale

REFERENCES:

1. Wolt, Heinrich Hucho, Aerodynamics of road vehicles
2. Bosch, Automotive Handbook
3. George Pieters Barbara Pieters, Automotive Vehicle Safety
4. Michel Plint Engine Testing Theory and Practice
5. Gousha H. M., Engine performance Diagnosis & Tune Up Shop Manual
8. SAE Transaction Papers 831814/820346/820367/820371/820375
9. SAE handbook vol 2 & 3
10. Automobile Engineering by Ramlingam
11. Automobile engineering by Kripal Singh
12. Automotive Mechanics by Joseph Heimer
13. ARAI vehicle emission test manual
14. Automobile Engineering by Rangawala

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
INTRODUCTION: Single degree of freedom, two degree of freedom, free, forced and damped vibrations modelling and simulation studies, model of an automobile, magnification factor, transmissibility, vibration absorber.

MULTI DEGREE FREEDOM SYSTEMS: Closed and coupled far system, orthogonality of mode shapes, modal analysis.

UNIT II

STABILITY OF VEHICLES: Load distribution, stability on a curved track slope and a banked road, calculation of tractive effort and reactions for different drives.

UNIT III

SUSPENSION TYRES AND VEHICLES HANDLING: Requirements, sprung mass frequency, wheel hop, wheel wobble, wheel shimmy, choice of suspension spring rate, calculation of effective spring rate, vehicle suspension in fore and aft, roll axis and vehicle under the action of side forces, tyre, dynamics, ride characteristics power consumed by a tyre, Oversteer, under steer, steady state cornering, effect of braking, driving torques on steering, effect of camber, transient effects in cornering.

UNIT IV

NUMERICAL METHODS: Approximate methods for determining fundamental frequency, Dunkerley's lower bound, Rayleigh's upper bound, Holzer method for closed coupled system and branched system.

TEXT BOOKS:
1. Giri N.K – Automotive Mechanics, Khanna Publishers

REFERENCES:
4. Ham B, Pacejka - Tyre and Vehicle Dynamics - SAE Publication
5. Gillespie T.D, “Fundamentals of Vehicle Dynamics”, SAE USA

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

MAINTENANCE OF RECORDS AND SCHEDULES: Importance of maintenance, preventive (scheduled) and breakdown (unscheduled) maintenance, requirements of maintenance, preparation of check lists, Inspection schedule, maintenance of records, log sheets and other forms, safety precautions in maintenance.

ENGINE MAINTENANCE, REPAIR AND OVERHAULING: Dismantling of engine components and cleaning, cleaning methods, visual and dimensional inspections, minor and major reconditioning of various components, reconditioning methods, engine assembly, special tools used for maintenance overhauling, engine tune up.

UNIT II

CHASSIS MAINTENANCE, REPAIR AND OVERHAULING: Mechanical and automobile clutch and gear box, servicing and maintenance, maintenance servicing of propeller shaft and differential system, Maintenance servicing of suspension systems. Brake systems, types and servicing techniques, Steering systems, overhauling and maintenance. Wheel alignment, computerized alignment and wheel balancing.

UNIT III

ELECTRICAL SYSTEM MAINTENANCE, SERVICING AND REPAIRS: Testing methods for checking electrical components, checking battery, starter motor, charging systems, DC generator and alternator, ignitions system, lighting systems, Fault diagnosis and maintenance of modern electronic controls, checking and servicing of dash board instruments.

UNIT IV

MAINTENANCE OF FUEL SYSTEM, COOLING SYSTEMS, LUBRICATION SYSTEM AND VEHICLE BODY: Servicing and maintenance of fuel system of different types of vehicles, calibration and tuning of engine for optimum fuel supply, Cooling systems, water pump, radiator, thermostat, anticorrosion and antifreeze additives, Lubrication maintenance, lubricating oil changing, greasing of parts. Vehicle body maintenance, minor and major repairs; Door locks and window glass actuating system maintenance.

TEXT BOOK:

2. James D Halderman - Advanced Engine Performance Diagnosis

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
MEI 623B ENTREPRENEURSHIP

B. Tech. Semester – VII (Automobile Engineering)- Open Elective

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

UNIT II

UNIT III

ENTREPRENEURSHIP DEVELOPMENT AND GOVERNMENT: Role of Central Government and State Government in promoting Entrepreneurship - Introduction to various incentives, subsidies and grants - Export Oriented Units - Fiscal and Tax concessions available; Role of Central/State agencies in the Entrepreneurship Development - District Industries Centers (DIC), Small Industries Service Institute (SISI), Entrepreneurship Development Institute of India (EDII), National Institute of Entrepreneurship & Small Business Development (NIESBUD), National Entrepreneurship Development Board (NEDB).

UNIT IV

TEXTS AND REFERENCES:

2. Entrepreneurship - Hisrich Peters.
3. The Culture of Entrepreneurship - Brigitte Berger.
5. Dynamics of Entrepreneurship Development - Vasant Desai.
7. Thought Leaders - Shrinivas Pandit.
8. Entrepreneurship, 3rd Ed. - Steven Brandt.
10. The Entrepreneurial Connection - Gurmit Narula.

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

UNIT III

UNIT IV

TEXT BOOKS:

REFERENCE BOOKS:
3. Biomedical Telemetry – Mackay, Stuart R., John Wiley, 1

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

MONOCHROME TV (PICTURE AND CAMERA TUBES): Monochrome picture tube, beam reflection, Beam focussing, Screen Phosphor, Face plate, Picture tube characteristics, picture tube circuit controls, Monochrome Camera Tubes: Basic principle, Image Orthicon, Vidicon, Plumbicon

UNIT II

COLOUR TV ESSENTIALS: Compatibility, Colour perception, Three Colour theory, Luminance, Hue and Saturation, Dispersion and Recombination of light, Primary and secondary colours, Luminance signal, Chrominance Signal, Colour picture tube, colour TV Camera, Colour TV display Tubes, colour Signal Transmission, Bandwidth for colour signal transmission, Colour TV controls. Cable TV, Block Diagram and principle of working of cable TV.

PLASMA AND LCD: Introduction, liquid crystals, types of LCD’s, TN, STN, TFT, Power requirements, LCD working, Principle of operation of TN display, Construction of TN display, Behaviour of TN liquid crystals, Viewing angle, colour balance, colour TN display, limitations, advantages, disadvantages, applications.

UNIT III

LED AND DMD: Introduction to LED Television, comparison with LCD and Plasma TV’s, schematic of DMD, introduction to Digital MicroMirror device, Diagram of DMD, principle of working, emerging applications of DMD.

MICROWAVE OVENS AND AIR CONDITIONERS: Microwaves, Transit Time, Magnetron, Waveguides, Microwave Oven, Microwave Cooking. Air conditioning, Components of air conditioning systems, all water Air conditioning systems, all air air conditioning Systems, Split air conditioner.

UNIT IV

MICROPHONES: Introduction, characteristics of microphones, types of microphone: carbon, moving coil, wireless, crystal, introduction to tape recorder.

LOUDSPEAKER: Introduction to ideal and basic loudspeaker, loudspeaker construction types of loudspeaker: Dynamic and permanent magnet, woofers, tweeters, brief introduction to baffles, equalisers.

TEXT BOOKS:

1. Consumer Electronics by S. P. Bali (Pearson Education)
2. Complete Satellite and Cable T.V by R.R Gulati (New Age International Publishers)

REFERENCE BOOKS:

1. Monochrome and Colour Television by R. R. Gulati

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
EE 451B ENERGY AUDIT
B. Tech. Semester – VII (Automobile Engineering) – Open Elective

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Examination</td>
<td>25 Marks</td>
</tr>
</tbody>
</table>

Total: 100 Marks
Duration of Examination: 3 Hours

UNIT I
INTRODUCTION TO THE POWER DISTRIBUTION SYSTEM: Description of the power distribution system- voltage levels, Components of the distribution system- Substation, Transformer, feeders, distribution system planning, operation & maintenance objectives, activities involved in O&M, grid management, load scheduling & dispatch, load balancing, 66-33/11 KV substation equipment, 11/0.4 KV substation equipment, Distribution transformers- reasons for DT failures.

UNIT II
ENERGY ACCOUNTING & ENERGY AUDIT: Need for energy accounting, objectives & functions of energy accounting, Energy flow diagram in power distribution system, energy accounting procedure- Energy measurement, and problems in energy accounting & overcoming these problems in energy accounting, Definition, need and types of energy audit, energy audit instruments, procedure for conducting an energy audit.

UNIT III
AT&C LOSS REDUCTION & EFFICIENCY IMPROVEMENT: Concepts and principles of distribution losses- transmission & distribution losses, AT&C losses in power distribution network, factors contributing to high technical & commercial losses. Technical loss reduction- Short term measures for technical loss reduction, long term plans for technical loss reduction, Commercial loss reduction- reasons for commercial losses, measures for commercial loss reduction.

UNIT IV
DEMAND SIDE MANAGEMENT: An introduction, Why DSM?, Benefits of DSM, DSM in power systems: load management, DSM techniques and emerging trends, EC Act 2001, DSM on consumer side – the industrial sector, the agricultural sector, the domestic & commercial sectors, ESCO-a route for DSM.

TEXT BOOKS:

REFERENCE BOOKS:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
EEE 457B ENERGY RESOURCES & TECHNOLOGY
B. Tech. Semester – VII (Automobile Engineering) – Open Elective

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
</tr>
</tbody>
</table>

Duration of Examination : 3 Hours

UNIT I

ENERGY SOURCES & AVAILABILITY: World energy situation. Indian energy scenario. Comparative study of thermal, hydro, nuclear and gas power plants. Impact of thermal, gas, hydro and nuclear power stations on environment, air and water pollution, green house effect (global warming). Plasma confinement - magnetic confinement and inertial confinement, geothermal, hydrogen energy, fuel cells, Alkaline fuel cells (AFC), Solid oxide fuel cell (SOFC), Molten carbonate fuel cells (MCFC), thermo-electric power, MHD power generation OTEC & tidal waves.

UNIT II

UNIT III

UNIT IV

TEXT BOOKS:

1. Electric Power Generation, B.R.Gupta
3. Power Plant Engg: G.D. Rai

REFERENCE BOOKS:

1. Renewable Energy Resources: John Twidell and Tony Weir

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
BT 401B BIOINFORMATICS

B. Tech. Semester – VII (Automobile Engineering) – Open Elective

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>:</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>Examination</td>
<td>:</td>
<td>75 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>:</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>:</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

INTRODUCTION: Internet, intranet and extranet, networking, protocols, genomic data, organization, representation, data base management systems.

SEQUENCING DATA BANK: Introduction, collecting and storing sequence in laboratory, nucleic acid data bank – Gen Bank, EMBL, AIDS and RNA, protein data bank (PDB), cambridge structural database CSD, genome data bank, hybridoma data bank structure and others.

UNIT II

SEQUENCE ANALYSIS: Analysis tools for sequence data banks, pair wise alignment: NEEDLEMAN and WUNSCH algorithms, Smith Waterman, multiple alignment – CLUSTAL-W, BLAST, FASTA, sequence patterns and motifs and profiles.

Predictions: Secondary and tertiary structure: algorithms Chao-Fasman algorithm, hidden Markov model, neural networking, protein classification, fold libraries, fold recognition (threading), homology detection, SRS-access to biological data banks.

UNIT III

PHYLOGENETIC ANALYSIS: Basic concepts in systematics, taxonomy and phylogeny, phylogenetic trees- various types and their construction, tree building methods, distance methods, multiple alignment character based method, phylogenetic software.

Managing Scientific Data: Introduction, challenges faced in integration of biological information, SRS, Kleisli Query System TAMBIS, P/FDM mediator for a bioinformatics database, federation, discovery link and data management.

UNIT IV

TEXT / REFERENCE BOOKS:

1. Developing Bioinformatics Computer Skill, ed. Gibes & Jombeck, Shroff Publication
2. Bioinformatics, ed. David W. Mount

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

UNIT III

NOISE & POLLUTION: Reduction of noise – Internal & external pollution control through alternate fuels / power plants – Catalytic converters and filters for particulate emission.

UNIT IV

VEHICLE OPERATION AND CONTROL: Computer control for pollution and noise control and for fuel economy – Transducers and actuators – Information technology for receiving proper information and operation of the vehicle like optimum speed and direction.

TEXT BOOKS:

REFERENCES:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

WATER POLLUTION: Classification of water pollutants, water characteristics, effluent standards, primary treatment, secondary treatment – aerobic (activated sludge, aerated lagoons, trickling filter, roughing filter, rotating biological contactor) anaerobic (contact process, UASB).

UNIT II

AIR POLLUTION: Classification of air pollutants, Particulates: Physical characteristics, mode of formation, setting properties, Control measures.

UNIT III

SOLID WASTE: Types, sources and properties of solid waste, methods of solid waste treatment and disposal
SOLID WASTE MANAGEMENT: Generation, Collection and techniques for ultimate disposal, Elementary discussion on resource and energy recovery.

UNIT IV

TREATMEN: Elementary treatment of nuclear pollution, metal pollution, noise pollution their effects & control. Trace element: Mechanism of distribution, essential and non essential elements, trace of element in marin environment, its ecological effects and biological effects.

SUGGESTED BOOKS:
2. Metacaf – EDDY – Waste-water engineering revised by George Teholonobus (TMH)

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
CSE 411B MANAGEMENT INFORMATION SYSTEM
B. Tech. Semester – VII (Automobile Engineering) – Open Elective

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

INFORMATION SYSTEM: Introduction to Information System and MIS, Decision support and decision making systems, systems approach, the systems view of business, Managing the digital firm, Electronic Commerce and Electronic business, DBMS, RDBMS, introduction to Telecommunication and Networks

I.T. INFRASTRUCTURE: Managing Hardware Assets, Managing Software Assets, Managing Data Resources, Internet And New IT Infrastructure.

UNIT II

CONCEPTUAL SYSTEM DESIGN: Define the problems, set systems objective, establish system constraints, determine information needs, determine information sources, develop alternative conceptual design and select one document the system concept, and prepare the conceptual design report. Information Systems Security and Control, Ethical and Social Impact of Information Systems.

UNIT III

DETAILED SYSTEM DESIGN: Inform and involve the organization, aim of detailed design, project management of MIS detailed design, identify dominant and trade of criteria, define the sub systems, sketch the detailed operating sub systems and information flow, determine the degree of automation of each operation, inform and involve the organization again, inputs outputs and processing, early system testing, software, hardware and tools propose an organization to operate the system, documentation of detailed design.

UNIT IV

IMPLEMENTATION, EVALUATION AND MAINTENANCE OF THE MIS: Plan the implementation, acquire floor space and plan space layouts, organize for implementation, develop procedures for implementation, train the operating personnel, computer related acquisitions, develop forms for data collection and information dissemination, develop the files test the system, cut-over, document the system, evaluate the MIS control and maintain the system. Pitfalls in MIS development, redesigning the organization with Information systems, Managing Knowledge Work.

TEXT BOOKS:

REFERENCE BOOKS:
1. Management Information System; O Brian; TMH
2. Management Information System by Davis Olson Mac Graw Hill

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION TO CYBERCRIME: Cybercrime and Information Security, Classifications of Cybercrimes, The need for Cyberlaws, The Indian IT Act Challenges to Indian Law and Cybercrime Scenario in India, Weakness in Information Technology Act and its consequences, Digital Signatures and the Indian IT Act, Cybercrime and Punishment; Technology, Students and Cyberlaw; Survival tactics for the Netizens, Cyber-offenses: Cyberstalking, Cybercafe and Cybercrimes, Botnets, Attack Vector, Cloud Computing;

UNIT II

UNIT III

UNIT IV

TEXT BOOKS:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two questions from each unit & students will be required to attempt only five questions, at least one question from each unit.

2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.

LIST OF EXPERIMENTS

1. Computerized engine analyzer study and practice
2. Computerized wheel balancing machine study and practice
3. Computerized wheel alignment machine study and practice
4. Exhaust emission test of petrol and diesel engine
5. Two wheeler chassis dynamometer study and practice
6. Road worthiness test: Acceleration, Gradability, Maximum speed,
7. Constant Speed fuel consumption, City drive fuel consumption tests
8. Head light focusing test
9. Visibility test;
10. Braking distance test

NOTE:

1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
B. Tech. Semester – VII (Automobile Engineering)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

VEHICLE MAINTENANCE LABORATORY
1. Study and Layout of Automobile Repair Shop.
2. Study and Preparation of Workshop Statements.
3. Study and List of Tools and Instruments.
4. Minor and Major Tuning Of Diesel and Petrol Engines.
5. Fault Diagnosis of Ignition, Starting And Charging System.
6. Fault Diagnosis of Petrol and Diesel Fuel System And Filters & Air Cleaners.
7. Fault Diagnosis of Lighting System Horn & Wiper.
9. Adjustment Of Pedal Play In Clutch Brake, Hand Brake And Steering Wheel.

RE-CONDITIONING LABORATORY
1. Cylinder reboring – checking the cylinder bore.
2. Valve grinding, valve lapping.
3. Setting the valve angle and checking for valve leakage Calibration of fuel injection pump
4. Wheel alignment – testing of camber, caster.
5. Testing kingpin inclination, toe-in and toe-out.
6. Brake adjustment
7. Brake bleeding

NOTE:
1. Ten experiments are to be performed in the Semester.
2. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the concerned institute as per the scope of the syllabus.
The primary objective of this course is to develop in students the professional quality of synthesis employing technical knowledge obtained in the field of Engineering & Technology through a project work involving design, analysis augmented with creativity, innovation and ingenuity.

Project involving design/ fabrication/ testing/ computer simulation/ case studies etc. which commences in the VII Semester will be completed in VIII Semester and will be evaluated through a panel of examiners consisting of the following:

- Chairman of Department : Chairperson
- Project coordinator : Member Secretary
- Respective project supervisor : Member

The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher).

Project coordinator will be assigned the project load of maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her.

The format of the cover page and the organization of the body of the report for all the B.Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
At the end of 6th semester each student would undergo four weeks Professional Training in an Industry/ Institute/ Professional / Organization/ Research Laboratory etc. with the prior approval of the Training and Placement Officer of the University and submit in the department a typed report along with a certificate from the organization.

The typed report should be in a prescribed format.

The report will be evaluated in the VII Semester by a Committee consisting of three teachers from different specialization to be constituted by the Chairperson of the department. The basis of evaluation will primarily be the knowledge and exposure of the student towards different processes and the functioning of the organization.

The student will interact with the committee through presentation to demonstrate his/her learning.

Teachers associated with evaluation work will be assigned 2 periods per week load.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. Final YEAR (SEMESTER – VIII) AUTOMOBILE ENGINEERING

Credit Based Scheme w.e.f. 2015-16

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AE 402B</td>
<td>EMERGING AUTOMOTIVE TECHNOLOGIES</td>
<td>4</td>
<td>0</td>
<td></td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AE 404B</td>
<td>AUTOMOTIVE WORKSHOPS TOOLS AND EQUIPMENTS</td>
<td>4</td>
<td>0</td>
<td></td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>ELECTIVE I</td>
<td></td>
<td>4</td>
<td>-</td>
<td></td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>ELECTIVE II</td>
<td></td>
<td>4</td>
<td>-</td>
<td></td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>AE 406B</td>
<td>AUTOMOTIVE WORKSHOPS TOOLS AND EQUIPMENTS LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>AE 408B</td>
<td>SEMINAR</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>50</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>AE 413B</td>
<td>PROJECT</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>75</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>GFAE 402B</td>
<td>GENERAL FITNESS FOR THE PROFESSION</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:

6. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weight age of Sports is given in General Fitness For The Profession Syllabus.

7. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

8. Electronics gadgets including Cellular phones are not allowed in the examination.

9. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. The minimum strength of the students should be twenty to run an elective course.

10. The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher). Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her. The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
UNIT I

THE FUTURE OF THE AUTOMOTIVE INDUSTRY: Challenges and Concepts for the 21st century, crucial issues facing the industry and approaches to meet these challenges.

FUEL CELL TECHNOLOGY FOR VEHICLES: What is fuel cell, Type of fuel cell, Advantages of fuel cell? current state of the technology, potential and challenges, advantages and disadvantages of hydrogen fuel.

UNIT II

42 VOLT SYSTEM: Need, benefits, potentials and challenges, Technology Implications for the Automotive Industry, Technological revolution that will occur as a result of the adoption of 42 volt systems.

UNIT III

INTEGRATED STARTER ALTERNATOR: Starts stop operation, Power Assist, Regenerative Braking. Advanced lead acid batteries, alkaline batteries, and Lithium batteries, Development of new energy storage systems, Deep discharge and rapid charging ultra capacitors.

UNIT IV

X-BY WIRE TECHNOLOGY: What is X-By Wire, Advantage over hydraulic systems? Use of Automotive micro controllers, Types of censors, Use of actuators in an automobile environment.

VEHICLES SYSTEMS: Constantly Variable Transmission, Benefits, Brake by wire, Advantages over power Braking System, Electrical assist steering, Steering by wire, Advantages of Steering by wire, Semi-active and fully-active suspension system, Advantages of fully active suspension system.

TEXT & REFERENCE BOOKS:
2. Electric and Hybrid Electric vehicles by Ronald K. Jurgen. - SAE International Publication
4. Electronics steering and suspension systems- SAE Hardbound papers.
5. 42 Volt system by Daniel J. Holt- SAE International Publication

NOTE:
13. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
14. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

LIFTING EQUIPMENT: Electromechanical Auto Lift, Four Post Hoist, Hydraulic Hoist, Work Shop Crane, Mechanical Hoist

UNIT II

WHEEL CARE EQUIPMENT: Wheel Balancing Machine, Wheel Alignment Equipment, Turning Radius Gauge, Camber Caster King Pin Gauge, Toe in Gauge, Tyre Changer, Tyre Inflator

UNIT III

PAINT SHOP EQUIPMENT: Spray Paint Booth, Sun Scanners

UNIT IV

CLEANING EQUIPMENT: Pressure Automatic Touch Free Car Wash System, High Pressure Steam Jet Cleaning, Vehicle Washers, Hose Reels, Auto Service Unit, Two/Three Wheeler Washers,
INJECTOR SERVICING EQUIPMENT: Nozzle Tester, Nozzle Cleaning Tool Set, Vacuum Fuel Pump Pressure Gauge, Fuel Injector Cleaning, Injector Cleaner
AIR CONDITION SERVICE EQUIPMENT: A/C Recovery Units, UV Leak Detection Kit, Refrigerant Identifier
BATTERY TESTER EQUIPMENT: Flash Timing Light, Battery Starter Tester, Battery Hydrometer Set, Battery Charger
GAS & SMOKE ANALYZER EQUIPMENT: Automotive Emission Analyzer, Smoke Opacity Meter
BRAKE TOOLS: Brake Tester, High Thermal Brake Tester, Brake Lath, Brake Bleeder
WORK SAFETY: Description, Work Cloth, Safe and Tidy Work, Fire Prevention, Electrical Equipment

TEXT & REFERENCE BOOKS:
2. Symphony in Automotive Care Catalogue by Precision Testing Machines Pvt Limited, Delhi

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION: Scope, historical developments, fundamental of fluid mechanics, flow phenomenon related to vehicles, external and Internal flow problem, resistance to vehicle motion, performance, fuel consumption and performance potential of vehicle aerodynamics, engine cooling requirement, air flow to passenger compartment, duct for air conditioning, cooling of transverse engine and rear engine.

UNIT II

AERODYNAMIC DRAG OF CARS: Cars as a bluff body, flow field around car, drag force, types of drag force, analysis of aerodynamic drag, drag coefficient of cars, strategies for aerodynamic development, low drag profiles.

UNIT III

SHAPE OPTIMIZATION OF CARS: Front end modification, front and rear wind shield angle, boat tailing, hatch back, fast back and square back, dust flow patterns at the rear, effects of gap configuration, effect of fasteners.

UNIT IV

VEHICLE HANDLING: The origin of forces and moments on a vehicle, lateral stability problems, methods to calculate forces and moments – vehicle dynamics under side winds, the effects of forces and moments, characteristics of forces and moments, dirt accumulation on the vehicle, wind noise, drag reduction in commercial vehicles.

UNIT V

WIND TUNNELS FOR AUTOMOTIVE AERODYNAMICS: Introduction, principle of wind tunnel technology, limitation of simulation, stress with scale models, full scale wind tunnels, measurement techniques, equipment and transducers, road testing methods, numerical methods.

TEXT BOOK:

REFERENCES:

2. Automotive Aerodynamic: Update SP-706 - SAE
3. Vehicle Aerodynamics - SP-1145 - SAE

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

TRACTORS AND FARM EQUIPMENTS: Classification and power required - Design consideration - Ride and stability characteristics power plants and transmission, Farm equipments.

UNIT II

EARTH MOVING MACHINES: Construction and operation aspects of Bull dozers, scrapers, Dumpers, Loaders, Mobile cranes, Road rollers, Elevators and Elevating graders.

UNIT III

MILITARY AND COMBAT VEHICLES: Special requirements like power, fuel strength and impact resistance tanker, Gun carrier and transport vehicle.

UNIT IV

CLASSIFICATION AND REQUIREMENTS OF HEAVY VEHICLES: Power plants, chassis and transmission.

TEXT BOOK:

REFERENCES:

2. A. Gurevich and E. Soreking, Tractors Mir Publishers, Moscow

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

AIRCONDITIONING FUNDAMENTALS: Basic air conditioning system - location of air conditioning components in a car, schematic layout of a refrigeration system, compressor components, condenser and high pressure service ports, thermostatic expansion valve, expansion valve calibration, controlling evaporator temperature, evaporator pressure regulator, evaporator temperature regulator.

UNIT II

AIR CONDITIONER – HEATING SYSTEM: Automotive heaters, manually controlled air conditioner, heater system, automatically controlled air conditioner and heater systems, automatic temperature control, air conditioning protection, engine protection.

UNIT III

REFRIGERANT: Containers handling refrigerants, tapping into the refrigerant container, refrigeration system diagnosis, diagnostic procedure, ambient conditions affecting system pressures.

UNIT IV

AIR ROUTING AND TEMPERATURE CONTROL: Objectives, evaporator airflow through the recirculating unit, automatic temperature control, duct system, controlling flow, vacuum reserve, testing the air control and handling systems.

UNIT V

AIR CONDITIONING SERVICE: Air conditioner maintenance and service, servicing heater system removing and replacing components, trouble shooting of air controlling system, compressor service.

TEXT BOOK:

REFERENCES:

5. Boyce H. Dwiggin’s “Automotive Air Conditioning”, Delmar

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION AND BASICS: What is Mechatronics?; A Measurement System with its constituent elements; Open and Closed Loop Systems; Sequential Controllers; Microprocessor Based Controllers; Mechatronic Approach.

HARDWARE OF MEASUREMENT SYSTEMS: A review of Displacement, Position Velocity, Motion, Force, Fluid Pressure, Liquid Flow, Liquid Level, Temperature, Light Sensors / along with Performance Terminology; Selection of Sensors; Input Data by Switches; Signal Conditioning; Brief Review of Operational Amplifier; Protection; Filtering; Wheat Stone Bridge; Digital Signals; Multiplexers; Data Acquisition; Digital Signal Processing; Pulse Modulation; Data Presentation Systems – Displays; Data Presentation Elements; Magnetic Recording; Data Acquisition Systems; Testing & Calibration; Problems.

UNIT II

PNEUMATIC, HYDRAULIC, MECHANICAL AND ELECTRICAL ACTUATION SYSTEMS: Pneumatic and Hydraulic Systems; Directional Control Valves; Valve Symbols; Pressure Control Valves; Cylinder Sequencing; Process Control Valves; Rotary Actuators; Mechanical Systems – Types of Motion, Kinematic Chains, Cam, Gear Trains, Ratchet & Pawl, Belt & Chain Drives, Bearings, Mechanical Aspect of Motor Selection; Electrical Systems; Mechanical & Solid State Switches; Solenoids; D.C. & A.C. Motors; Stepper Motors; Problems.

UNIT III

CLOSED LOOP CONTROLLERS: Continuous and Discrete Processes – Lag, Steady State Error; Control Modes; Two-step Mode; Proportional Mode – Electronic Proportional Controllers; Derivative Control – Proportional plus Derivative Control; Integral Control – Proportional plus Integral Control; PID Controller – Operational Amplifier PID Circuits; Digital Controllers – Implementing Control Modes; Control System Performance; Controller Tuning – Process Reaction Method & Ultimate Cycle Method; Velocity Control; Adaptive Control; Problems.

DIGITAL LOGIC AND PROGRAMMABLE LOGIC CONTROLLERS: A Review of Number Systems & Logic Gates; Boolean Algebra; Kanaugh Maps; Sequential Logic; Basic Structure of Programmable Logic Controllers; Input/Output Processing; Programming: Timers, Internal Relays and Counters; Master & Jump Controls; Data Handling; Analogue Input/Output; Selection of a PLC; Problems.

UNIT IV

MICROPROCESSORS AND INPUT/OUTPUT SYSTEMS: Control; Microcomputer Structure; Microcontrollers; Applications; Programming Languages; Instruction Sets; Assembly Language Programs; Subroutines, Why C Language? A review of Program Structure, Branches, Loops, Arrays, Pointer; Examples of Programs; Interfacing; Input/Output; Interface Requirements; Peripheral Interface Adaptors; Serial Communication Interface; Examples of Interfacing; Problems.

DESIGN AND MECHATRONICS: Design Process; Traditional and Mechatronics Design; Possible Mechatronics design solutions for Timed Switch, Wind Screen Wiper Motion, Bath Room Scale, A Pick & Place Robot, Automatic Camera, Engine Management System & Bar Code Recorder.

TEXT BOOKS:
1. Mechatronics by W. Bolton, Published by Addition Wesley.

REFERENCE BOOKS:
2. Mechatronics – Sensing to Implementation - C.R.Venkataraman, Sapna

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
NON DESTRUCTIVE TESTING METHODS

B. Tech. Semester –VIII (Automobile Engineering) ELECTIVE I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

NON-DESTRUCTIVE TESTING: Introduction, classification of NDT techniques,
VISUAL EXAMINATION: Bore-scopes, video devices,
MAGNETIC PARTICLE TESTING: Operating principal, magnetising technique.

UNIT II

LIQUID PENETRATING TECHNIQUE: Principle, process description.
ULTRASONIC TESTING: Definition, advantages and applications, inspection methods.
RADIOGRAPHY: Electromagnetic radiation sources, process description.

UNIT III

THERMOGRAPHY: Infrared theory, contact, non-contact methods.
ACCOUSTIC EMISSION TESTING, eddy current testing,
LEAK TESTING: Bubble emission testing, Air leak testing.

UNIT IV

CASE STUDIES: on defects in casting, rolling, welding, and heat-treating.

REFERENCES:

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

TAXATION: Objectives, Structure & methods of levying taxation, Onetime tax, Tax exemption & tax renewal
INSURANCE: Insurance types & significance, Comprehensive, Third party insurance, Furnishing of particulars of vehicles involved in accident, MACT (Motor Accident Claims Tribunal), Solatium Fund, Hit & Run case, Duty of driver in case of accident, Surveyor & Loss Assessor, Surveyor’s report

UNIT IV

PASSENGER TRANSPORT OPERATION: Structure of passenger transport organizations, Typical depot layouts, Requirements and Problems on fleet management, Fleet maintenance, Planning - Scheduling operation & control, Personal & training-training for drivers & conductors, Public relations, Propaganda, publicity and passenger amenities, Parcel traffic., Theory of fares-Basic principles of fare charging, Differential rates for different types of services, Depreciation & debt charges, Operation cost and Revenues, Economics & records
GOODS TRANSPORT OPERATION: Structure of goods transport organizations, Scheduling of goods transport, Management Information System in passenger, goods transport operation, Storage & transportation of petroleum products

UNIT IV

ADVANCE TECHNIQUES IN TRAFFIC MANAGEMENT: Traffic navigation, Global positioning system
AUTOMOBILE INDUSTRY: History and development of the automobile industry, market trends, current scenario in Indian auto industry, Auto ancillary industries, Role of the automobile industry in national growth.

TEXTBOOK:

REFERENCES:
3. The motor vehicle Act 1939 - Ejaz Ahemad, Ashok law house, India
4. S.K. Shrivastava, "Economics of Transport”
7. P.G.Patankar, "Road Passenger Transport in India", CIRT, Pune.

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
B. Tech. Semester – VIII (Automobile Engineering) ELECTIVE II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>:</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Examination</td>
<td>:</td>
<td>75 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>:</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>:</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I

BASIC PRINCIPLES OF ERGONOMICS: Anthropometry, Posture and Health; Anthropometry Practical; Displays, Controls and HMI; Tools and Equipment Design; Workplace Design and Assessment; Task Analysis; Questionnaire and Interview Design; Product Design and Evaluation; Designing for manufacture and maintenance; Health and Safety Legislation and Ergonomics.

UNIT II

APPLICATION OF ERGONOMICS PRINCIPLES: Cognitive Ergonomics, Human Information Processing; Memory; Reading; Perception; Navigation; Problem Solving; Decision Making, Human-Computer Interaction, Input/Output Technology, Usability; Evaluation; Health problems.

UNIT III

UNIT IV

CASE STUDIES: A set of case studies will be used to demonstrate how ergonomics has lead to changes in work activity, safety and product design. Case studies will include advanced computer applications, workplace assessment and re-design, accident analysis and industrial inspection, and in manufacturing. Students will be required to apply the principles to a real life ergonomic design as applied to a product, service or computer application.

TEXT BOOKS:

REFERENCE BOOKS:

8. Bodyspace–Anthropometry, Ergonomics and Design. – Pheasant, S. Taylor & Francis.,

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

BASICS OF VIBRATION: Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non-linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II

BASICS OF NOISE: Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III

UNIT IV

CONTROL TECHNIQUES: Vibration isolation, tuned absorbers, untuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.
SOURCE OF NOISE AND CONTROL: Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TEXT BOOKS:
2. Kewal Pujara “Vibrations and Noise for Engineers, Dhanpat Rai & Sons

REFERENCES:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

UNIT II

JIGS: Drill bushes –different types of jigs-plate latch, channel, box, post, angle plate, angular post, turnover, pot jigs-Automatic drill jigs-Rack and pinion operated. Air operated Jigs components, Design and development of Jigs for given components.

FIXTURES: General principles of boring, lathe, milling and broaching fixtures- Grinding, planning and shaping fixtures, assembly, Inspection and welding fixtures- Modular fixtures, Design and development of fixtures for given component.

UNIT III

UNIT V

DESIGN AND DEVELOPMENT OF DIES: Design and development of progressive and compound dies for Blanking and piercing operations, Bending dies – development of bending dies-forming and drawing dies-Development of drawing dies. Design considerations in forging, extrusion, casting and plastic dies

TEXT BOOKS:

REFERENCES:

1. Kempster, “Jigs & Fixtures Design”, the English Language Book Society
5. PSG College of Technology, Coimbatore - Design Data Handbook

NOTE:

1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT I

INTRODUCTION AND PROCESS CONTROL FOR VARIABLES: Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality cost-Variation in process factors – process capability – process capability studies and simple problems – Theory of control chart - uses of control chart – Control chart for variables – X chart, R chart and e chart.

UNIT II

PROCESS CONTROL FOR ATTRIBUTES: Control chart for attributes –control chart for proportion or fraction defectives – p chart and np chart – control chart for defects – C and U charts, State of control and process out of control identification in charts.

UNIT III

UNIT IV

TEXT BOOKS:
2. L.S.Srinath, “Reliability Engineering”, Affiliated East west press

REFERENCES:

NOTE:
1. In the semester examination, the examiner will set eight questions in all; two question from each unit & students will be required to attempt only five questions, at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
AE 406B AUTOMOTIVE WORKSHOPS TOOLS AND EQUIPMENTS LAB

B. Tech. Semester –VIII (Automobile Engineering)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>:</th>
<th>Examination</th>
<th>:</th>
<th>Total</th>
<th>:</th>
<th>Duration of Examination</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

To study the construction, working and operation with or on the following tools and equipments for given task

4. LIFTING EQUIPMENT: Electromechanical Auto Lift, Four Post Hoist, Hydraulic Hoist, Work Shop Crane, Mechanical Hoist
6. WHEEL CARE EQUIPMENT: Wheel Balancing Machine, Wheel Alignment Equipment, Turning Radius Gauge, Camber Caster King Pin Gauge, Toe in Gauge, Tyre Changer, Tyre Inflator
9. PAINT SHOP EQUIPMENT: Spray Paint Booth, Sun Scanners
10. CLEANING EQUIPMENT: Pressure Automatic Touch Free Car Wash System, High Pressure Steam Jet Cleaning, Vehicle Washers, Hose Reels, Auto Service Unit, Two/ Three Wheeler Washers,
11. INJECTOR SERVICING EQUIPMENT: Nozzle Tester, Nozzle Cleaning Tool Set, Vacuum Fuel Pump Pressure Gauge, Fuel Injector Cleaning, Injector Cleaner
12. AIR CONDITION SERVICE EQUIPMENT: A/C Recovery Units, UV Leak Detection Kit, Refrigerant Identifier
13. BATTERY TESTER EQUIPMENT: Flash Timing Light, Battery Starter Tester, Battery Hydrometer Set, Battery Charger
14. GAS & SMOKE ANALYZER EQUIPMENT: Automotive Emission Analyzer, Smoke Opacity Meter
15. BRAKE TOOLS: Brake Tester, High Thermal Brake Tester, Brake Lath, Brake Bleeder
16. WORK SAFETY: Description, Work Cloth, Safe and Tidy Work, Fire Prevention, Electrical Equipment

NOTE:

3. At least ten experiments are to be performed in the semester.
4. At least eight experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.
The objectives of the course remains

- To learn how to carry out literature search
- To learn the art of technical report writing
- To learn the art of verbal communication with the help of modern presentation techniques

A student will select a topic in emerging areas of Engineering & Technology and will carry out the task under the observation of a teacher assigned by the department.

He/She will give a seminar talk on the same before a committee constituted by the chairperson of the department. The committee should comprise of three faculty members from different specializations. The teacher associated in the committee will be assigned 2 hours teaching load per week.

However, guiding students’ seminar will not be considered towards teaching load.

The format of the cover page and the organization of the body of the seminar report for all the undergraduate programs will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
The project started in VII Semester will be completed in VIII Semester and will be evaluated through a panel of examiners consisting of the following:

<table>
<thead>
<tr>
<th>Chairperson of Department</th>
<th>: Chairperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project coordinator</td>
<td>: Member</td>
</tr>
<tr>
<td>External expert</td>
<td>: To be appointed by the University</td>
</tr>
</tbody>
</table>

The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher).

Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her.

The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
GENERAL FITNESS FOR THE PROFESSION

B. Tech. Semester –VIII (Automobile Engineering)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 Marks</td>
</tr>
</tbody>
</table>

| | | | | 100 Marks |

The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/ her performance / achievements in different walks of life.

The evaluation will be made by the committee of examiners constituted as under:

1. Dean, Faculty of Engineering & Technology/ Director /Principal of affiliated college : Chairperson
2. Chairperson of the department : Member
3. External expert : Appointed by the university

A. The student will present a written report before the committee with following in view:

The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

I. Academic Performance
II. Extra Curricular Activities / Community Service, Hostel Activities
III. Technical Activities / Industrial, Educational tour
IV. Sports/games

(12 Marks)
(12 Marks)
(16 Marks)

NOTE: Report submitted by the students should be typed on both sides of the paper.

B. A student will support his/her achievement and verbal & communicative skill through presentation before the examiners.

(40 Marks)

C. Faculty Counselor Assignment

It will be the duty of the student to get evaluated by respective faculty counselor and to submit the counselor assessment marks in a sealed envelope to the committee.

A counselor will assess the student which reflects his/her learning graph including followings:

1. Discipline throughout the year
2. Sincerity towards study
3. How quickly the student assimilates professional value system etc.
4. Moral values & Ethics

(20 Marks)